当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chiral cavity quantum electrodynamics
Nature Physics ( IF 17.6 ) Pub Date : 2022-07-28 , DOI: 10.1038/s41567-022-01671-3
John Clai Owens , Margaret G. Panetta , Brendan Saxberg , Gabrielle Roberts , Srivatsan Chakram , Ruichao Ma , Andrei Vrajitoarea , Jonathan Simon , David I. Schuster

Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter1, has played a foundational role in the development of modern quantum information science and technology. In parallel, the field of condensed matter physics has been revolutionized by the discovery of underlying topological2,3,4, often arising from the breaking of time-reversal symmetry, as in the case of the quantum Hall effect. In this work, we explore the cavity quantum electrodynamics of a transmon qubit in a topologically nontrivial Harper–Hofstadter lattice5. We assemble the lattice of niobium superconducting resonators6 and break time-reversal symmetry by introducing ferrimagnets7 before coupling the system to a transmon qubit. We spectroscopically resolve the individual bulk and edge modes of the lattice, detect Rabi oscillations between the excited transmon and each mode and measure the synthetic-vacuum-induced Lamb shift of the transmon. Finally, we demonstrate the ability to employ the transmon to count individual photons8 within each mode of the topological band structure. This work opens the field of experimental chiral quantum optics9, enabling topological many-body physics with microwave photons 10,11 and providing a route to backscatter-resilient quantum communication.



中文翻译:

手征腔量子电动力学

腔量子电动力学通过将谐振器耦合到非线性发射器1来探索光的粒度,在现代量子信息科学技术的发展中发挥了基础性作用。与此同时,凝聚态物理领域因发现底层拓扑2,3,4而发生了革命性变化,这通常是由于时间反转对称性的破坏而引起的,例如量子霍尔效应。在这项工作中,我们在拓扑非平凡的 Harper-Hofstadter 晶格5中探索了 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器6的晶格,并通过引入铁磁体7打破了时间反演对称性在将系统耦合到 transmon qubit 之前。我们通过光谱解析晶格的单个体模和边缘模,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导的 Lamb 位移。最后,我们展示了使用 transmon在拓扑能带结构的每个模式中计算单个光子8的能力。这项工作开辟了实验手性量子光学9的领域,使拓扑多体物理与微波光子10,11成为可能,并提供了反向散射弹性量子通信的途径。

更新日期:2022-07-29
down
wechat
bug