当前位置: X-MOL 学术Geology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biogeodynamics: Coupled evolution of the biosphere, atmosphere, and lithosphere
Geology ( IF 4.8 ) Pub Date : 2022-08-01 , DOI: 10.1130/geol50thaug.1
Christopher J. Spencer 1
Affiliation  

There is broad consensus that tectonic and magmatic processes play a role in the evolution of life and the composition of the atmosphere. Tectonic and magmatic processes provide a suite of bio-essential nutrients that are carried into the hydrosphere through sedimentary processes. Tectonic processes facilitate the subsequent recycling and concentration of these nutrients for continued biospheric utilization. The burgeoning field of “biogeodynamics” aims to test hypotheses about such connections (Fig. 1). The past 50 years brought the plate tectonics revolution into full swing. The next 50 years are in a prime position to expand phylogenic consensus, augmenting secular evolution of geologic processes and expanding the links between the disparate processes controlling the evolution of the biosphere, atmosphere, and the solid Earth.The past 50 years have also focused considerable attention on defining secular change in geologic processes. The uniformities of law and process are unequivocally accepted by the geologic community and uniformity of rate (gradualism) is largely rejected (Gould, 1965). However, the uniformity of state (that is, the lack of secular change in geologic processes and resulting phenomena) continues to be debated even when it comes to first-order processes such as the onset of plate tectonics or advent of oxygenic photosynthesis. There are “tectonic uniformitarianists” who argue for the emergence of effectively modern-style plate tectonics during the Hadean (Harrison et al., 2017; Rosas and Korenaga, 2018) and others who broadly ascribe to an onset either during the Archean (Shirey and Richardson, 2011; Nutman et al., 2015) or Proterozoic (Stern, 2018). As for oxygenic oxygenation, there are the “whiffers” who posit an early evolution of atmospheric photosynthesis that is decoupled from the Great Oxygenation Event (Anbar et al., 2007; Lyons et al., 2014) and those who contend the early “whiffs” of oxygen are the product of alteration (Slotznick et al., 2022) and hypothesize a direct link between the rise of atmospheric oxygen and evolution of oxyphotobacteria (Fischer et al., 2016; Soo et al., 2017).The primary connection between bioproductivity and tectono-magmatism is largely related to rock-bound nutrients delivered to the oceans through weathering and erosion processes (Cox et al., 2018; Zerkle, 2018). Additionally, plate tectonic processes provide environmental pressures through continental redistribution, opening and closing oceans, and growing mountain ranges which all carry the potential to isolate and stimulate populations. Chemical exchange between the atmosphere, hydrosphere, and biosphere with the lithosphere results in traceable changes in sedimentary composition throughout geologic time (Smit and Mezger, 2017). In this way, sedimentary rocks are the direct harbinger of interactions between the biosphere, hydrosphere, and atmosphere with the lithosphere. Sedimentary deposition along continental margins and within ocean basins ultimately leads to a sizable fraction of sedimentary material becoming incorporated into magmatic systems during convergent tectonics (Liebmann et al., 2021).In my unabashedly biased view, the mineral zircon continues to provide important contributions to biogeodynamic discussions. Through thermochronology, geochronology, trace element concentration and Hf, O, and Li isotopic compositions, zircon can provide insight into mountain formation and denudation, sedimentary provenance and burial, metamorphism and magmatic recycling, and long-term tectonic cycles. Recent work has sought to directly tie the zircon record to the increase of continental freeboard (Reimink et al., 2021) which is temporally correlated with atmospheric oxygenation (Spencer et al., 2019). Nevertheless, various oft-overlooked accessory mineral species are gaining more of the limelight as advances in mineral liberation and mass spectrometry expand avenues for their analysis. Apatite, rutile, monazite, garnet, titanite, and allanite have great potential to augment our understanding of biogeodynamics. In particular, apatite has a special connection between magmatism and metamorphism with biological productivity in terms of a riverine phosphorus source (Hao et al., 2021) but also as a direct recorder of phosphate burial and diagenesis (Lumiste et al., 2019).A fundamental question is how much life shaped geologic processes and how much geologic processes have influenced the evolution of life (DePaolo, 2008). Was the origin and evolution of life directly coupled to and therefore traceable through the secular change in geologic processes, or did geology play a passive role in the biosphere? Although there is a clear correlation between various geologic processes and the evolution of the biosphere and atmosphere, the causality of these connections is sometimes tenuous or at the very least would benefit from greater shoring.The next steps in addressing whether evolution of life and atmosphere is coupled to the lithosphere will require synthesizing wide arrays of data spanning disparate disciplines and methodologies. This includes continued exploration of novel isotopic proxies that hold significant promise in testing biogeodynamic hypotheses. Advances in isotopic analysis hold significant promise in expanding our understanding through nitrogen, selenium, zinc, copper, and triple oxygen isotopes.In addition to the isotopic investigations, biogeodynamic hypotheses are also being tested in fields as diverse as paleomagnetism and phylogenetics. Earth's magnetic field plays an important role in protecting the biosphere from cosmic radiation and solar wind; however, recent research has proposed how fluctuations in the magnetic field had a direct influence on the evolution of life on Earth (Bono et al., 2022). This is intuitive as the magnetic field shields the biosphere from harmful radiation. Nevertheless, establishing the paleointensity of the magnetic field is no trivial task and requires only the highest quality data to constrain secular changes in the magnetic field (Bono et al., 2022).Phylogenetics play a vital role as calibrations of molecular clocks point to the approximate time at which taxa divergence occurred. In particular, the relationship between the evolution of oxygenic phototrophs and the Great Oxygenation Event remains unclear, with some proponents for an early Archean emergence of oxygenic photosynthesis (Cardona et al., 2019) and others arguing for a causal relationship between oxygenic phototrophs with the Great Oxygenation Event (Fischer et al., 2016; Soo et al., 2017). Further work is under way that aims to unify the geologic record with phylogenetics that will undoubtedly lead to further insight into the possible coupling between the biosphere, atmosphere, and lithosphere.Suffice it to say that the future is bright when it comes to our understanding of the coupled evolution of the biosphere, atmosphere, and lithosphere. With new tools applied to old problems and new problems tested with compiled data, the next 50 years is sure to see the field of biogeodynamics breaking the boundaries of the scientific status quo.

中文翻译:

生物地球动力学:生物圈、大气和岩石圈的耦合演化

人们普遍认为,构造和岩浆过程在生命进化和大气组成中发挥作用。构造和岩浆过程提供了一套生物必需的营养物质,这些营养物质通过沉积过程带入水圈。构造过程促进了这些营养物质的后续循环和浓缩,以供生物圈继续利用。“生物地球动力学”这一新兴领域旨在检验有关这种联系的假设(图 1)。50年来,板块构造革命如火如荼。未来 50 年处于扩大系统发育共识、增强地质过程的长期演化和扩大控制生物圈、大气和固体地球演化的不同过程之间的联系的主要位置。在过去的 50 年中,也将相当多的注意力集中在定义地质过程中的长期变化上。法律和程序的统一性被地质界明确接受,而速率的统一性(渐进主义)在很大程度上被拒绝(Gould,1965)。然而,即使涉及到诸如板块构造开始或含氧光合作用出现等一级过程,状态的一致性(即地质过程和由此产生的现象缺乏长期变化)仍然存在争议。有“构造均变论者”主张在冥王纪(Harrison et al., 2017; Rosas and Korenaga, 2018)期间出现了有效的现代式板块构造,而其他人则广泛地将其归因于太古宙(Shirey and Richardson,2011;Nutman 等人,2015)或元古代(Stern,2018)。至于氧合,有些“嗅觉者”认为大气光合作用的早期演化与大氧化事件脱钩(Anbar et al., 2007; Lyons et al., 2014)和那些认为早期的“嗅闻”的人”的氧气是变化的产物(Slotznick 等人,2022 年),并假设大气氧气的增加与产氧光合细菌的进化之间存在直接联系(Fischer 等人,2016 年;Soo 等人,2017 年)。主要联系生物生产力和构造岩浆作用之间的差异很大程度上与通过风化和侵蚀过程输送到海洋的岩石结合的营养物质有关(Cox 等,2018;Zerkle,2018)。此外,板块构造过程通过大陆重新分布、打开和关闭海洋、和不断增长的山脉,这些山脉都具有隔离和刺激人口的潜力。大气、水圈和生物圈与岩石圈之间的化学交换导致整个地质时期沉积物成分的可追溯变化(Smit 和 Mezger,2017 年)。因此,沉积岩是生物圈、水圈和大气与岩石圈相互作用的直接预兆。大陆边缘和海洋盆地内的沉积沉积最终导致相当大一部分沉积物质在收敛构造过程中被纳入岩浆系统(Liebmann 等人,2021 年)。在我毫不掩饰的偏见中,矿物锆石继续为生物地球动力学讨论。通过热年代学、地质年代学、微量元素浓度和 Hf、O 和 Li 同位素组成,锆石可以提供对山体形成和剥蚀、沉积物源和埋藏、变质和岩浆循环以及长期构造旋回的洞察。最近的工作试图将锆石记录与大陆干舷的增加直接联系起来(Reimink 等人,2021 年),这与大气氧合在时间上相关(Spencer 等人,2019 年)。然而,随着矿物释放和质谱技术的进步扩展了它们的分析途径,各种经常被忽视的辅助矿物种类越来越受到关注。磷灰石、金红石、独居石、石榴石、榍石和海蓝石在增进我们对生物地球动力学的理解方面具有巨大潜力。尤其是,磷灰石在岩浆作用和变质作用之间有着特殊的联系,在河流磷源方面具有生物生产力(Hao 等人,2021 年),而且还作为磷酸盐埋藏和成岩作用的直接记录者(Lumiste 等人,2019 年)。一个基本问题是多少生命塑造了地质过程以及多少地质过程影响了生命的进化(DePaolo,2008)。生命的起源和进化是否与地质过程的长期变化直接相关并因此可以追溯,还是地质学在生物圈中扮演被动角色?尽管各种地质过程与生物圈和大气的演变之间存在明显的相关性,但这些联系的因果关系有时是微不足道的,或者至少会受益于更大的支撑。解决生命和大气演化是否与岩石圈耦合的下一步将需要综合跨越不同学科和方法的大量数据。这包括继续探索在测试生物地球动力学假设方面具有重要前景的新型同位素代理。同位素分析的进展在扩大我们对氮、硒、锌、铜和三氧同位素的理解方面具有重要的前景。除了同位素研究外,生物地球动力学假设也在古地磁学和系统发育学等不同领域得到检验。地球磁场在保护生物圈免受宇宙辐射和太阳风影响方面发挥着重要作用;然而,最近的研究提出了磁场波动如何直接影响地球上生命的进化(Bono 等人,2022 年)。这是直观的,因为磁场可以保护生物圈免受有害辐射。然而,确定磁场的古强度并非易事,只需要最高质量的数据来限制磁场的长期变化(Bono 等人,2022 年)。系统发育学起着至关重要的作用,因为分子钟的校准指向类群分歧发生的大致时间。特别是,含氧光养生物的进化与大氧化事件之间的关系仍不清楚,一些支持者认为早期太古宙出现了含氧光合作用(Cardona et al., 2019)和其他人争论氧合光养生物与大氧合事件之间存在因果关系(Fischer et al., 2016; Soo et al., 2017)。进一步的工作正在进行中,旨在将地质记录与系统发育学统一起来,这无疑将进一步深入了解生物圈、大气和岩石圈之间可能存在的耦合。就我们对生物圈、大气和岩石圈的耦合演化。随着新工具应用于旧问题和用汇编数据测试新问题,未来 50 年肯定会看到生物地球动力学领域打破科学现状的界限。进一步的工作正在进行中,旨在将地质记录与系统发育学统一起来,这无疑将进一步深入了解生物圈、大气和岩石圈之间可能存在的耦合。就我们对生物圈、大气和岩石圈的耦合演化。随着新工具应用于旧问题和用汇编数据测试新问题,未来 50 年肯定会看到生物地球动力学领域打破科学现状的界限。进一步的工作正在进行中,旨在将地质记录与系统发育学统一起来,这无疑将进一步深入了解生物圈、大气和岩石圈之间可能存在的耦合。就我们对生物圈、大气和岩石圈的耦合演化。随着新工具应用于旧问题和用汇编数据测试新问题,未来 50 年肯定会看到生物地球动力学领域打破科学现状的界限。
更新日期:2022-07-26
down
wechat
bug