当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Printing Liquid Metal Elastomer Composites for High-Performance Stretchable Thermoelectric Generators
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2022-07-24 , DOI: 10.1002/aenm.202201413
Youngshang Han 1 , Leif‐Erik Simonsen 2 , Mohammad H. Malakooti 1, 2, 3
Affiliation  

Continuous powering of wearable electronics and personalized biomonitoring systems remains a great challenge. One promising solution is the use of thermoelectric generators (TEGs) that convert body heat to electricity. These energy harvesters must conform to curved surfaces and minimize thermal barriers to maintain efficiency while still exhibiting durability under large deformations. Here, highly efficient, stretchable thermoelectric generators made of inorganic semiconductors and printed multifunctional soft matter are introduced. Liquid metal elastomer composites with tailored microstructures are printed as highly conductive thermal interface materials and stretchable interconnects. Additionally, elastomer composites with hollow microspheres are formulated to print a deformable and lightweight thermal insulator within the device. These stretchable thermoelectric wearables show an excellent performance by generating an open-circuit voltage of 392 mV and a power density of ≈650 µW cm−2 at ∆T = 60 °C and withstanding more than 15 000 stretching cycles at 30% strain. Furthermore, the additive manufacturing process is leveraged by direct writing of the TEGs on textiles to demonstrate their seamless integration and by 3D printing of stretchable heatsinks to maintain a large temperature gradient across the device and to study the effect of convective heat transfer on device performance.

中文翻译:

打印用于高性能可拉伸热电发电机的液态金属弹性体复合材料

可穿戴电子设备和个性化生物监测系统的持续供电仍然是一个巨大的挑战。一种有前景的解决方案是使用热电发电机 (TEG),将体热转化为电能。这些能量收集器必须符合曲面并最大限度地减少热障以保持效率,同时在大变形下仍表现出耐用性。在这里,介绍了由无机半导体和印刷多功能软物质制成的高效、可拉伸的热电发电机。具有定制微结构的液态金属弹性体复合材料被打印为高导热界面材料和可拉伸互连。此外,具有空心微球的弹性体复合材料被配制用于在设备内打印可变形且重量轻的绝热体。-2在 Δ T  = 60 °C 下,在 30% 应变下承受超过 15 000 次拉伸循环。此外,增材制造工艺通过在纺织品上直接写入 TEG 来展示它们的无缝集成,并通过 3D 打印可拉伸散热器来保持整个设备的大温度梯度,并研究对流热传递对设备性能的影响。
更新日期:2022-07-24
down
wechat
bug