当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High hydrogen isotopes permeation resistance in (TiVAlCrZr)O multi-component metal oxide glass coating
Acta Materialia ( IF 8.3 ) Pub Date : 2022-07-23 , DOI: 10.1016/j.actamat.2022.118204
Lulu Hu , Fen Zhong , Jun Zhang , Shijun Zhao , Yongqiang Wang , Guangxu Cai , Tao Cheng , Guo Wei , Shuangfeng Jia , Dongxun Zhang , Ran Yin , Zhiquan Chen , Changzhong Jiang , Feng Ren

Developing ceramic coating with high hydrogen isotopes permeation resistance is an urgent task in many fields such as fusion reactor systems, hydrogen storage/transportation, and fuel cell. In this work, a (TiVAlCrZr)O multi-component metal oxide glass (MCMOG) coating is developed as a new type of hydrogen isotopes permeation barrier (HIPB), and the diffusion behavior of deuterium in MCMOG is studied for the first time. Compared with the deuterium permeation reduction factor (DPRF) of 51 for amorphous alumina coating (at 587 °C in 0.65 µm), the 29 nm dense MCMOG coating has around 27 times enhancement with DPRF of 1420 at 550 °C. Based on first-principles calculations, we show that the significantly suppressed deuterium permeation in MCMOGs is attributed to the sluggish diffusion of deuterium arising from the highly rugged energy landscape, which is induced by the diversity of electronic band structures near the Fermi level. In addition, oxygen vacancies strongly affect PRF, where the PRF of the fully oxidized MCMOG layer (29 nm) is around 200 times compared to that of MCMOG with the same thickness containing oxygen vacancies. Therefore, dense MCMOG is a new promising HIPB material.



中文翻译:

(TiVAlCrZr)O多组分金属氧化物玻璃涂层中的高氢同位素抗渗透性

开发具有高氢同位素渗透阻力的陶瓷涂层是聚变反应堆系统、氢储存/运输和燃料电池等许多领域的紧迫任务。本工作开发了一种(TiVAlCrZr)O多组分金属氧化物玻璃(MCMOG)涂层作为一种新型氢同位素渗透屏障(HIPB),并首次研究了氘在MCMOG中的扩散行为。与非晶氧化铝涂层的氘渗透降低因子 (DPRF) 为 51(587 °C,0.65 µm)相比,29 nm 致密 MCMOG 涂层在 550 °C 时的 DPRF 为 1420,提高了约 27 倍。基于第一性原理计算,我们表明,MCMOGs 中氘渗透的显着抑制归因于高度崎岖的能源环境引起的氘扩散缓慢,这是由费米能级附近电子能带结构的多样性引起的。此外,氧空位对PRF的影响很大,其中完全氧化的MCMOG层(29 nm)的PRF是相同厚度的含有氧空位的MCMOG的200倍左右。因此,致密MCMOG是一种很有前途的新型HIPB材料。

更新日期:2022-07-23
down
wechat
bug