当前位置: X-MOL 学术At. Sprays › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ANALYSIS ON ATOMIZATION CHARACTERISTICS OF FUEL SLINGER FROM TURBOJET ENGINE WP11
Atomization and Sprays ( IF 1.0 ) Pub Date : 2022-01-01 , DOI: 10.1615/atomizspr.2022042681
Fang Wang , Jiangtao Cai , Haitao Zhang , Han Gao , Jie Jin

Fuel slingers are widely used in small- and medium-sized aero engine combustors and offer the advantages of lower fuel supply pressure, smaller axial size, and easier manufacturing. While fuel slinger atomization quality generally has no relationship with aircraft flight height, there is little research on the atomization characteristics of fuel slingers under various combustor conditions. In this paper, a phase Doppler particle analyzer (PDPA) and a high-speed camera were used to measure the spatial distribution of spray droplets in the external flow field of the WP11 engine slinger at different rotation speeds and flow rates. The results showed that the spray jets were uneven in the same circle holes. The air dynamic force and unsteady spray motion dominated the breakup process. In the axial direction, there was an M-shaped double peak spatial distribution of the atomized spray particles' Sauter mean diameters (SMD). The M-shaped distribution was not symmetrical because of the arrangement of the injection holes. The side with more injection holes had higher atomization quality, higher spray concentration, and lower SMD. In the radial direction, with the increase of the radius, the distance between the two SMD peaks widened, the SMD distribution curve was smoother, and the atomization uniformity was higher. SMD distributions were similar under different fuel slinger rotation speeds: increasing rotation speeds caused the distance between the two SMD peaks to be wider and average SMD to be smaller.

中文翻译:

涡喷WP11抛油环雾化特性分析

抛油环广泛应用于中小型航空发动机燃烧室,具有供油压力低、轴向尺寸小、制造容易等优点。虽然抛油环雾化质量一般与飞机飞行高度无关,但对抛油环在各种燃烧室工况下的雾化特性研究较少。本文采用相位多普勒粒子分析仪(PDPA)和高速摄像机对WP11发动机抛油环外流场中不同转速和流速下喷雾液滴的空间分布进行测量。结果表明,同一圆孔内喷流不均匀。空气动力和非定常喷雾运动主导了破碎过程。在轴向上,雾化喷雾颗粒的索特平均直径(SMD)呈M型双峰空间分布。由于喷射孔的排列,M 形分布不对称。喷孔多的一侧雾化质量高,喷雾浓度高,SMD低。在径向上,随着半径的增加,两个SMD峰之间的距离变宽,SMD分布曲线更平滑,雾化均匀度更高。在不同的抛油环转速下,SMD 分布相似:增加转速导致两个 SMD 峰之间的距离更宽,平均 SMD 更小。由于喷射孔的排列,M 形分布不对称。喷孔多的一侧雾化质量高,喷雾浓度高,SMD低。在径向上,随着半径的增加,两个SMD峰之间的距离变宽,SMD分布曲线更平滑,雾化均匀度更高。在不同的抛油环转速下,SMD 分布相似:增加转速导致两个 SMD 峰之间的距离更宽,平均 SMD 更小。由于喷射孔的排列,M 形分布不对称。喷孔多的一侧雾化质量高,喷雾浓度高,SMD低。在径向上,随着半径的增加,两个SMD峰之间的距离变宽,SMD分布曲线更平滑,雾化均匀度更高。在不同的抛油环转速下,SMD 分布相似:增加转速导致两个 SMD 峰之间的距离更宽,平均 SMD 更小。SMD分布曲线更平滑,雾化均匀度更高。在不同的抛油环转速下,SMD 分布相似:增加转速导致两个 SMD 峰之间的距离更宽,平均 SMD 更小。SMD分布曲线更平滑,雾化均匀度更高。在不同的抛油环转速下,SMD 分布相似:增加转速导致两个 SMD 峰之间的距离更宽,平均 SMD 更小。
更新日期:2022-01-01
down
wechat
bug