当前位置: X-MOL 学术npj Flex. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradable germanium electronics for integrated biosensing of physiological signals
npj Flexible Electronics ( IF 12.3 ) Pub Date : 2022-07-21 , DOI: 10.1038/s41528-022-00196-2
Haonan Zhao , Zhongying Xue , Xiaozhong Wu , Zhihuan Wei , Qiuyu Guo , Miao Xu , Chunyan Qu , Chunyu You , Yongfeng Mei , Miao Zhang , Zengfeng Di , Qinglei Guo

Transient electronics that can disappear or degrade via physical disintegration or chemical reaction over a pre-defined operational period provide essential for their applications in implantable bioelectronics due to the complete elimination of the second surgical extraction. However, the dissolution of commonly utilized bioresorbable materials often accompanies hydrogen production, which may cause potential or irreparable harm to the human body. This paper introduces germanium nanomembrane-based bioresorbable electronic sensors, where the chemical dissolution of all utilized materials in biofluidic theoretically have no gaseous products. In particular, the superior electronic transport of germanium enables the demonstrated bioresorbable electronic sensors to successfully distinguish the crosstalk of different physiological signals, such as temperature and strain, suggesting the significant prospect for the construction of dual or multi-parameter biosensors. Systematical studies reveal the gauge factor and temperature coefficient of resistance comparable to otherwise similar devices with gaseous products during their dissolution.



中文翻译:

用于生理信号综合生物传感的可生物降解锗电子器件

由于完全消除了第二次手术提取,瞬态电子器件可以在预定义的操作期内通过物理分解或化学反应消失或降解,这对于它们在可植入生物电子学中的应用至关重要。然而,常用的生物可吸收材料的溶解往往伴随着氢气的产生,这可能对人体造成潜在的或无法弥补的伤害。本文介绍了基于锗纳米膜的生物可吸收电子传感器,其中生物流体中所有利用材料的化学溶解理论上没有气态产物。特别是,锗的卓越电子传输使所展示的生物可吸收电子传感器能够成功区分不同生理信号的串扰,例如温度和应变,这表明构建双参数或多参数生物传感器具有重要的前景。系统研究表明,在溶解过程中具有气体产品的其他类似装置可与电阻的规格因子和温度系数相媲美。

更新日期:2022-07-22
down
wechat
bug