当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A model predictive control for attitude stabilization and spin control of a spacecraft with a flexible rotating payload
Acta Astronautica ( IF 3.1 ) Pub Date : 2022-07-21 , DOI: 10.1016/j.actaastro.2022.07.024
Paolo Iannelli , Federica Angeletti , Paolo Gasbarri

Many Earth observation missions, implementing space-based microwave sensing techniques for collecting Earth surface information, employ spinning sensors to cover large swaths of terrestrial areas, thus improving the rate at which global maps of those measured data are generated. These spacecraft (as Soil Moisture Active Passive (SMAP) developed by NASA or Copernicus Imaging Microwave Radiometer (CIMR) currently under development by Thales Alenia Space) consist of a main non-spun platform and a rotating part composed of an antenna boom, a deployable reflector and a rotation mechanism. As the reflector is designated to rotate about the nadir axis producing conically scanned antenna beams with precise surface incidence angle, the payload pointing accuracy needs to be addressed at both spin subsystem and platform level. In this work, a representative model of the dynamic behaviour of SMAP satellite is developed as a study case to design the proposed control strategies; in particular, the SMAP-like payload structural model is built using FEM commercial codes. The spacecraft is equipped with a Reaction Wheels Assembly (RWA) to accomplish both momentum compensation for the spun element and three-axis attitude control and a motor for the spin mechanism. The objective of the study is to develop the spacecraft control architecture in the frame of Model Predictive Control (MPC) theory. MPC refers to a class of algorithms in which the control action is obtained by computing an open-loop optimal sequence of control moves over a predefined time horizon; moreover, the ability to set constraints on process inputs and outputs directly in the problem formulation allows to account for actuators’ limits. In the study two operative phases of the satellite are addressed: the spin-up, in which the 6-meter diameter antenna is spun-up to the operative condition of 14.6 RPM, and the Science Phase, in which precise nadir pointing and stability of the flexible system must be kept for acquiring high-resolution measurements. To this purpose, control–structure interaction between attitude/spin control system and flexible dynamics, system’s imbalances are carefully addressed by the control system. The nonlinear in-orbit dynamics of the flexible spacecraft is then used to evaluate the performance of the MPC controller in terms of pointing accuracy and robustness to uncertainties.



中文翻译:

具有灵活旋转载荷的航天器姿态稳定和自旋控制的模型预测控制

许多地球观测任务采用基于空间的微波传感技术来收集地球表面信息,使用旋转传感器覆盖大片陆地区域,从而提高生成这些测量数据的全球地图的速度。这些航天器(由 NASA 开发的土壤水分主动无源(SMAP)或目前由 Thales Alenia Space 开发的哥白尼成像微波辐射计(CIMR))由一个主要的非旋转平台和一个由天线吊杆组成的旋转部分,可展开反射器和旋转机构。由于反射器被指定围绕天底轴旋转,产生具有精确表面入射角的锥形扫描天线波束,因此需要在自旋子系统和平台级别解决有效载荷指向精度问题。在这项工作中,开发了 SMAP 卫星动态行为的代表性模型作为研究案例,以设计所提出的控制策略;特别是,类似 SMAP 的有效载荷结构模型是使用 FEM 商业代码构建的。该航天器配备了一个反作用轮组件(RWA)来完成旋转元件的动量补偿和三轴姿态控制以及旋转机构的电机。该研究的目的是在模型预测控制(MPC)理论的框架内开发航天器控制架构。MPC指的是一类算法,其中控制动作是通过计算在预定时间范围内的开环最优控制移动序列来获得的;而且,在问题公式中直接对过程输入和输出设置约束的能力允许考虑执行器的限制。在研究中解决了卫星的两个操作阶段:旋转,其中 6 米直径的天线旋转到 14.6 RPM 的操作条件,以及科学阶段,其中精确的最低点指向和稳定性必须保留灵活的系统以获取高分辨率测量。为此,姿态/自旋控制系统和灵活动力学之间的控制结构相互作用,系统的不平衡由控制系统仔细处理。然后使用柔性航天器的非线性在轨动力学来评估 MPC 控制器在指向精度和对不确定性的鲁棒性方面的性能。在研究中解决了卫星的两个操作阶段:旋转,其中 6 米直径的天线旋转到 14.6 RPM 的操作条件,以及科学阶段,其中精确的最低点指向和稳定性必须保留灵活的系统以获取高分辨率测量。为此,姿态/自旋控制系统和灵活动力学之间的控制结构相互作用,系统的不平衡由控制系统仔细处理。然后使用柔性航天器的非线性在轨动力学来评估 MPC 控制器在指向精度和对不确定性的鲁棒性方面的性能。在研究中解决了卫星的两个操作阶段:旋转,其中 6 米直径的天线旋转到 14.6 RPM 的操作条件,以及科学阶段,其中精确的最低点指向和稳定性必须保留灵活的系统以获取高分辨率测量。为此,姿态/自旋控制系统和灵活动力学之间的控制结构相互作用,系统的不平衡由控制系统仔细处理。然后使用柔性航天器的非线性在轨动力学来评估 MPC 控制器在指向精度和对不确定性的鲁棒性方面的性能。为了获得高分辨率测量,必须保持灵活系统的精确天底指向和稳定性。为此,姿态/自旋控制系统和灵活动力学之间的控制结构相互作用,系统的不平衡由控制系统仔细处理。然后使用柔性航天器的非线性在轨动力学来评估 MPC 控制器在指向精度和对不确定性的鲁棒性方面的性能。为了获得高分辨率测量,必须保持灵活系统的精确天底指向和稳定性。为此,姿态/自旋控制系统和灵活动力学之间的控制结构相互作用,系统的不平衡由控制系统仔细处理。然后使用柔性航天器的非线性在轨动力学来评估 MPC 控制器在指向精度和对不确定性的鲁棒性方面的性能。

更新日期:2022-07-21
down
wechat
bug