当前位置: X-MOL 学术Eur. J. Nucl. Med. Mol. Imaging › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative evaluation of a deep learning-based framework to generate whole-body attenuation maps using LSO background radiation in long axial FOV PET scanners
European Journal of Nuclear Medicine and Molecular Imaging ( IF 9.1 ) Pub Date : 2022-07-19 , DOI: 10.1007/s00259-022-05909-3
Hasan Sari 1, 2 , Mohammadreza Teimoorisichani 3 , Clemens Mingels 2 , Ian Alberts 2 , Vladimir Panin 3 , Deepak Bharkhada 3 , Song Xue 2 , George Prenosil 2 , Kuangyu Shi 2 , Maurizio Conti 3 , Axel Rominger 2
Affiliation  

Purpose

Attenuation correction is a critically important step in data correction in positron emission tomography (PET) image formation. The current standard method involves conversion of Hounsfield units from a computed tomography (CT) image to construct attenuation maps (µ-maps) at 511 keV. In this work, the increased sensitivity of long axial field-of-view (LAFOV) PET scanners was exploited to develop and evaluate a deep learning (DL) and joint reconstruction-based method to generate µ-maps utilizing background radiation from lutetium-based (LSO) scintillators.

Methods

Data from 18 subjects were used to train convolutional neural networks to enhance initial µ-maps generated using joint activity and attenuation reconstruction algorithm (MLACF) with transmission data from LSO background radiation acquired before and after the administration of 18F-fluorodeoxyglucose (18F-FDG) (µ-mapMLACF-PRE and µ-mapMLACF-POST respectively). The deep learning-enhanced µ-maps (µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST) were compared against MLACF-derived and CT-based maps (µ-mapCT). The performance of the method was also evaluated by assessing PET images reconstructed using each µ-map and computing volume-of-interest based standard uptake value measurements and percentage relative mean error (rME) and relative mean absolute error (rMAE) relative to CT-based method.

Results

No statistically significant difference was observed in rME values for µ-mapDL-MLACF-PRE and µ-mapDL-MLACF-POST both in fat-based and water-based soft tissue as well as bones, suggesting that presence of the radiopharmaceutical activity in the body had negligible effects on the resulting µ-maps. The rMAE values µ-mapDL-MLACF-POST were reduced by a factor of 3.3 in average compared to the rMAE of µ-mapMLACF-POST. Similarly, the average rMAE values of PET images reconstructed using µ-mapDL-MLACF-POST (PETDL-MLACF-POST) were 2.6 times smaller than the average rMAE values of PET images reconstructed using µ-mapMLACF-POST. The mean absolute errors in SUV values of PETDL-MLACF-POST compared to PETCT were less than 5% in healthy organs, less than 7% in brain grey matter and 4.3% for all tumours combined.

Conclusion

We describe a deep learning-based method to accurately generate µ-maps from PET emission data and LSO background radiation, enabling CT-free attenuation and scatter correction in LAFOV PET scanners.



中文翻译:

在长轴 FOV PET 扫描仪中使用 LSO 背景辐射生成全身衰减图的基于深度学习的框架的定量评估

目的

衰减校正是正电子发射断层扫描 (PET) 图像形成中数据校正中至关重要的一步。当前的标准方法涉及将 Hounsfield 单位从计算机断层扫描 (CT) 图像转换为在 511 keV 处构建衰减图(µ-图)。在这项工作中,利用长轴视场 (LAFOV) PET 扫描仪提高的灵敏度来开发和评估深度学习 (DL) 和基于联合重建的方法,以利用基于镥的背景辐射生成 µ-maps (LSO) 闪烁体。

方法

来自 18 名受试者的数据用于训练卷积神经网络,以增强使用联合活动和衰减重建算法 (MLACF) 生成的初始 µ-maps,以及来自 LSO 背景辐射的传输数据,该数据在施用18 F-氟脱氧葡萄糖 ( 18 F- FDG)(分别为 µ-map MLACF-PRE和 µ-map MLACF-POST)。将深度学习增强的 µ-maps(µ-map DL-MLACF-PRE和 µ-map DL-MLACF-POST)与 MLACF 派生的和基于 CT 的地图(µ-map CT). 该方法的性能还通过评估使用每个 µ-map 重建的 PET 图像并计算基于感兴趣体积的标准摄取值测量值以及相对于 CT 的相对平均误差百分比 (rME) 和相对平均绝对误差 (rMAE) 来评估。基于方法。

结果

μ-map DL-MLACF-PRE和 μ-map DL-MLACF-POST在脂肪基和水基软组织以及骨骼中的 rME 值均未观察到统计学上的显着差异,这表明放射性药物活性的存在在身体中对由此产生的 µ-maps 的影响可以忽略不计。与 µ-map MLACF -POST 的 rMAE 相比, µ-map DL-MLACF-POST的 rMAE 值平均降低了 3.3 倍。同样,使用 µ-map DL-MLACF-POST (PET DL-MLACF-POST ) 重建的 PET 图像的平均 rMAE 值比使用 µ-map MLACF-POST重建的 PET 图像的平均 rMAE 值小 2.6 倍. 与 PET CT相比, PET DL-MLACF-POST的 SUV 值的平均绝对误差在健康器官中小于 5%,在脑灰质中小于 7%,在所有肿瘤组合中小于 4.3%。

结论

我们描述了一种基于深度学习的方法,可以根据 PET 发射数据和 LSO 背景辐射准确生成 µ 图,从而在 LAFOV PET 扫描仪中实现无 CT 衰减和散射校正。

更新日期:2022-07-20
down
wechat
bug