当前位置: X-MOL 学术Int. J. Numer. Anal. Methods Geomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase transition in monodisperse granular materials: How to model it by using a strain hardening visco-elastic-plastic constitutive relationship
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 4 ) Pub Date : 2022-07-18 , DOI: 10.1002/nag.3412
Pietro Marveggio 1 , Irene Redaelli 2 , Claudio di Prisco 1
Affiliation  

During heating (loading characterised by a progressive increase in strain rate) and cooling (loading characterised by a progressive decrease in strain rate) numerical tests, performed by using Discrete Element codes, granular materials experience phase transition phenomena, named in this paper ‘dry liquefaction’ (when from solid the material starts behaving like a fluid) and ‘dry resolidification’ (freezing, when the material from fluid starts behaving like a solid). The aim of this paper consists in reproducing phase transition phenomena by using a strain hardening visco-elastic-plastic model based on the critical state concept and kinetic theories of granular gases. The authors demonstrate that crucial is the role of isotropic softening/hardening, which describes the size of the elastic domain and the capability of the solid skeleton of storing elastic energy according to permanent force chains. The main ingredients of the model are: (i) the additivity of quasi-static and collisional stresses, (ii) the energy balance equation governing the evolution of the granular temperature, interpreted this latter as an additional internal variable for the system for the collisional contribution, (iii) the mixed isotropic and kinematic hardening characterising the quasi-static incremental constitutive relationship. The model has been both calibrated and validated on Discrete Element Method (DEM) numerical results, obtained by testing dry assemblies of monodisperse spheres under true triaxial loading conditions.

中文翻译:

单分散颗粒材料中的相变:如何使用应变硬化粘弹塑性本构关系对其进行建模

在加热(以应变速率逐渐增加为特征的加载)和冷却(以应变速率逐渐降低为特征的加载)数值测试期间,通过使用离散元代码执行,粒状材料经历相变现象,在本文中命名为“干液化” '(当材料从固体开始表现得像流体时)和“干再凝固”(冻结,当材料从流体开始表现得像固体时)。本文的目的在于通过使用基于临界状态概念和颗粒气体动力学理论的应变硬化粘弹塑性模型来再现相变现象。作者证明,各向同性软化/硬化的作用至关重要,它描述了弹性域的大小和固体骨架根据永久力链存储弹性能量的能力。该模型的主要成分是:(i)准静态和碰撞应力的可加性,(ii)控制颗粒温度演变的能量平衡方程,将后者解释为碰撞系统的附加内部变量贡献,(iii)混合各向同性和运动硬化表征准静态增量本构关系。该模型已根据离散元法 (DEM) 数值结果进行了校准和验证,该数值结果是通过在真正的三轴加载条件下测试单分散球体的干组件获得的。(i) 准静态和碰撞应力的可加性,(ii) 控制颗粒温度演变的能量平衡方程,将后者解释为系统碰撞贡献的附加内部变量,(iii) 混合各向同性和运动硬化表征准静态增量本构关系。该模型已根据离散元法 (DEM) 数值结果进行了校准和验证,该数值结果是通过在真正的三轴加载条件下测试单分散球体的干组件获得的。(i) 准静态和碰撞应力的可加性,(ii) 控制颗粒温度演变的能量平衡方程,将后者解释为系统碰撞贡献的附加内部变量,(iii) 混合各向同性和运动硬化表征准静态增量本构关系。该模型已根据离散元法 (DEM) 数值结果进行了校准和验证,该数值结果是通过在真正的三轴加载条件下测试单分散球体的干组件获得的。(iii) 混合各向同性和运动硬化表征准静态增量本构关系。该模型已根据离散元法 (DEM) 数值结果进行了校准和验证,该数值结果是通过在真正的三轴加载条件下测试单分散球体的干组件获得的。(iii) 混合各向同性和运动硬化表征准静态增量本构关系。该模型已根据离散元法 (DEM) 数值结果进行了校准和验证,该数值结果是通过在真正的三轴加载条件下测试单分散球体的干组件获得的。
更新日期:2022-07-18
down
wechat
bug