当前位置: X-MOL 学术Environ. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional numerical simulation of basin-scale internal waves in a long narrow lake
Environmental Fluid Mechanics ( IF 1.7 ) Pub Date : 2022-07-16 , DOI: 10.1007/s10652-022-09868-z
Abbas Dorostkar , Leon Boegman , Seth A. Schweitzer , Andrew Pollard

The three-dimensional MITgcm (MIT general circulation model) was applied to simulate wind-induced baroclinic oscillations in Cayuga Lake, to obtain an understanding of the internal seiche/surge dynamics and associated mixing in long narrow lakes. The MITgcm has not been rigorously validated for closed basins against field observations. Thus, qualitative and quantitative methods were used to validate the model and study the sensitivity to different model parameters against observed temperature data. The linear equation of state (EoS) yielded poor results, in comparison to the polynomial EoS formulations where the density gradient was large. The vertical density stratification was strongly sensitive to the background vertical viscosity and diffusivity (when > 10–5 m2s−1), because the prescribed background values control mixing in the KPP scheme, except on the surface and bottom boundary layers. After calibration, the model correctly simulated the vertical stratification, upwelling, basin-scale seiche (with a horizontal mode-one period T1 = 80 h) and surge formation with a basin-wide root-mean-square-error 1.9 °C. Flow visualization indicated that internal surges evolved due to (i) a wind-induced locally downwelled thermocline (wind duration < T1/4), (ii) a basin-scale wind-induced upwelled thermocline (wind duration > T1/4) and (iii) internal hydraulic jumps.



中文翻译:

狭长湖泊盆地尺度内波三维数值模拟

应用三维 MITgcm(MIT 大气环流模型)模拟卡尤加湖中风引起的斜压振荡,以了解长窄湖的内部塞切/浪涌动力学和相关混合。MITgcm 尚未针对现场观测对封闭盆地进行严格验证。因此,定性和定量方法被用来验证模型并研究不同模型参数对观察到的温度数据的敏感性。与密度梯度较大的多项式 EoS 公式相比,线性状态方程 (EoS) 的结果较差。垂直密度分层对背景垂直粘度和扩散率非常敏感(当 > 10 –5 m 2 s -1),因为规定的背景值控制 KPP 方案中的混合,除了表面和底部边界层。标定后,该模型正确模拟了垂直分层、上升流、盆地尺度塞切(水平模式一周期T 1  = 80 h)和涌流形成,全盆地均方根误差为1.9°C。流动可视化表明内部浪涌的演变是由于(i)风引起的局部下涌温跃层(风持续时间 <  T 1 /4),(ii)盆地尺度的风致上涌温跃层(风持续时间 >  T 1 /4) ( iii ) 内部水力跳跃。

更新日期:2022-07-17
down
wechat
bug