当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferroelectric polymers for neuromorphic computing
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2022-05-23 , DOI: 10.1063/5.0073085
Xuezhong Niu 1 , Bobo Tian 1, 2, 3 , Qiuxiang Zhu 1, 3 , Brahim Dkhil 2 , Chungang Duan 1, 4
Affiliation  

The last few decades have witnessed the rapid development of electronic computers relying on von Neumann architecture. However, due to the spatial separation of the memory unit from the computing processor, continuous data movements between them result in intensive time and energy consumptions, which unfortunately hinder the further development of modern computers. Inspired by biological brain, the in situ computing of memristor architectures, which has long been considered to hold unprecedented potential to solve the von Neumann bottleneck, provides an alternative network paradigm for the next-generation electronics. Among the materials for designing memristors, i.e., nonvolatile memories with multistate tunable resistances, ferroelectric polymers have drawn much research interest due to intrinsic analog switching property and excellent flexibility. In this review, recent advances on artificial synapses based on solution-processed ferroelectric polymers are discussed. The relationship between materials' properties, structural design, switching mechanisms, and systematic applications is revealed. We first introduce the commonly used ferroelectric polymers. Afterward, device structures and the switching mechanisms underlying ferroelectric synapse are discussed. The current applications of organic ferroelectric synapses in advanced neuromorphic systems are also summarized. Eventually, the remaining challenges and some strategies to eliminate non-ideality of synaptic devices are analyzed.

中文翻译:

用于神经形态计算的铁电聚合物

过去几十年见证了依赖冯·诺依曼体系结构的电子计算机的快速发展。然而,由于存储单元与计算处理器的空间分离,它们之间连续的数据移动导致密集的时间和能量消耗,不幸的是,这阻碍了现代计算机的进一步发展。受生物大脑的启发,忆阻器架构的原位计算长期以来被认为具有解决冯诺依曼瓶颈的前所未有的潜力,为下一代电子产品提供了一种替代网络范式。在用于设计忆阻器的材料中,即具有多态可调电阻的非易失性存储器,由于固有的模拟开关特性和出色的灵活性,铁电聚合物引起了广泛的研究兴趣。在这篇综述中,讨论了基于溶液处理的铁电聚合物的人工突触的最新进展。揭示了材料特性、结构设计、转换机制和系统应用之间的关系。我们首先介绍常用的铁电聚合物。之后,讨论了铁电突触的器件结构和开关机制。还总结了有机铁电突触在高级神经形态系统中的当前应用。最后,分析了剩余的挑战和一些消除突触装置非理想性的策略。讨论了基于溶液处理的铁电聚合物的人工突触的最新进展。揭示了材料特性、结构设计、转换机制和系统应用之间的关系。我们首先介绍常用的铁电聚合物。之后,讨论了铁电突触的器件结构和开关机制。还总结了有机铁电突触在高级神经形态系统中的当前应用。最后,分析了剩余的挑战和一些消除突触装置非理想性的策略。讨论了基于溶液处理的铁电聚合物的人工突触的最新进展。揭示了材料特性、结构设计、转换机制和系统应用之间的关系。我们首先介绍常用的铁电聚合物。之后,讨论了铁电突触的器件结构和开关机制。还总结了有机铁电突触在高级神经形态系统中的当前应用。最后,分析了剩余的挑战和一些消除突触装置非理想性的策略。我们首先介绍常用的铁电聚合物。之后,讨论了铁电突触的器件结构和开关机制。还总结了有机铁电突触在高级神经形态系统中的当前应用。最后,分析了剩余的挑战和一些消除突触装置非理想性的策略。我们首先介绍常用的铁电聚合物。之后,讨论了铁电突触的器件结构和开关机制。还总结了有机铁电突触在高级神经形态系统中的当前应用。最后,分析了剩余的挑战和一些消除突触装置非理想性的策略。
更新日期:2022-05-23
down
wechat
bug