当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2022-07-13 , DOI: 10.1016/j.csite.2022.102233
Saima Batool , Ghulam Rasool , Nawa Alshammari , Ilyas Khan , Hajra Kaneez , Nawaf Hamadneh

In this article, the heat and mass transfer mechanism of micropolar nanofluid embedded with Buoyancy force and magnetic field across an enclosure has been analyzed. Mass, energy, and momentum equations are required to construct the mathematical model to evaluate the efficacy of thermal performance of nanoparticles.The motivation for this study is to improve heat and mass transfer efficiency in heat transfer equipment and heat recovery units in industrial and engineering processes. Given the signification of dimensional analysis, 2D model is set up in their dimensionless context. In addition, the finite volume approach (FVM) is employed for numerical simulations. The thermophoresis and Brownian motion parameters has been considered for the temperature field, as proven via simulation. As a result of the random mobility of nanoparticles, more heat is emitted inside the enclosure. Furthermore, mass diffusivity and Schmidt number are inversely related,so that mass diffusion inside the cavity is faster for small values of Schmidt number. Additionally, it is discovered that a high vortex viscosity parameter produces a weak concentration field and has significant behavior when thermophoresis parameter and Reynolds number are significant. The simulations are captured in graphical form, and their results are explained in detail.



中文翻译:

流过盖子驱动腔的微极性纳米流体传热和传质的数值分析:有限体积法

在本文中,分析了嵌入有浮力和磁场的微极纳米流体在外壳上的传热和传质机制。需要质量、能量和动量方程来构建数学模型来评估纳米粒子热性能的功效。本研究的动机是提高工业和工程过程中传热设备和热回收单元的传热和传质效率. 鉴于量纲分析的意义,二维模型是在其无量纲上下文中建立的。此外,有限体积法(FVM)用于数值模拟。热泳和布朗运动参数已被考虑用于温度场,如通过模拟所证明的那样。由于纳米粒子的随机流动性,外壳内部散发出更多的热量。此外,质量扩散率与施密特数成反比,施密特数越小,腔内的质量扩散越快。此外,还发现当热泳参数和雷诺数显着时,高涡粘度参数产生弱浓度场并具有显着的行为。模拟以图形形式捕获,并详细解释了它们的结果。研究发现,当热泳参数和雷诺数显着时,高涡粘度参数产生弱浓度场并具有显着的行为。模拟以图形形式捕获,并详细解释了它们的结果。研究发现,当热泳参数和雷诺数显着时,高涡粘度参数产生弱浓度场并具有显着的行为。模拟以图形形式捕获,并详细解释了它们的结果。

更新日期:2022-07-16
down
wechat
bug