当前位置: X-MOL 学术Frontiers of Architectural Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D extrusion of multi-biomaterial lattices using an environmentally informed workflow
Frontiers of Architectural Research ( IF 3.1 ) Pub Date : 2022-07-13 , DOI: 10.1016/j.foar.2022.06.010
Vasiliki Panagiotidou , Andreas Koerner , Marcos Cruz , Brenda Parker , Bastian Beyer , Sofoklis Giannakopoulos

The conventional building material palette has been proven limited in terms of adaptability to our current environmental challenges. Innovations in computational design and digital manufacturing have supported the broadening of biomaterial applications as an alternative. While biomaterials are characteristically responsive to stimuli such as temperature and humidity, their unpredictable behaviour is a hurdle to standardization and architectural utilisation. To examine the nexus between material formulation, computation and manufacturing, multi-biomaterial lattice structures were produced through an environmentally informed workflow. Customized biomaterial development resulted in three candidate biopolymer blends with varying levels of hydro-responsiveness and transparency. The computational strategy included a machine learning clustering algorithm to customise results and dictate material distribution outputs. To test the workflow, environmental data of solar radiation exposure and solar heat gain from a specific location was used to inform the material deposition via pneumatic extrusion for the design and digital fabrication of a deformation-controlled prototype of 350 mm × 350 mm. This led to a series of multi-biomaterial wall panel components that can be applied at architectural scale. In future, these techniques can support the incorporation of living elements to be embedded within the built environment for truly animate architecture.



中文翻译:

使用环保工作流程对多生物材料晶格进行 3D 挤压

事实证明,传统的建筑材料调色板在适应我们当前的环境挑战方面是有限的。计算设计和数字制造方面的创新支持扩大生物材料应用作为替代方案。虽然生物材料对温度和湿度等刺激具有特征性的响应,但它们不可预测的行为是标准化和建筑利用的障碍。为了检查材料配方、计算和制造之间的联系,通过环境知情的工作流程生产了多生物材料晶格结构。定制的生物材料开发产生了三种候选生物聚合物混合物,具有不同程度的水响应性和透明度。计算策略包括机器学习聚类算法,用于定制结果并指示材料分布输出。为了测试工作流程,使用来自特定位置的太阳辐射暴露和太阳热增益的环境数据来告知通过气动挤压的材料沉积,以设计和数字制造 350 mm × 350 mm 的变形控制原型。这导致了一系列可应用于建筑规模的多生物材料墙板组件。将来,这些技术可以支持将生活元素嵌入到建筑环境中,以实现真正的动画建筑。来自特定位置的太阳辐射暴露和太阳热增益的环境数据用于通过气动挤压为材料沉积提供信息,以设计和数字制造 350 mm × 350 mm 的变形控制原型。这导致了一系列可应用于建筑规模的多生物材料墙板组件。将来,这些技术可以支持将生活元素嵌入到建筑环境中,以实现真正的动画建筑。来自特定位置的太阳辐射暴露和太阳热增益的环境数据用于通过气动挤压为材料沉积提供信息,以设计和数字制造 350 mm × 350 mm 的变形控制原型。这导致了一系列可应用于建筑规模的多生物材料墙板组件。将来,这些技术可以支持将生活元素嵌入到建筑环境中,以实现真正的动画建筑。

更新日期:2022-07-13
down
wechat
bug