当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilization of wavy porous layer, magnetic field and hybrid nanofluid with slot jet impingement on the cooling performance of conductive panel
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2022-07-14 , DOI: 10.1108/hff-03-2022-0192
Mohamed Ouni , Fatih Selimefendigil , Besbes Hatem , Lioua Kolsi , Mohamed Omri

Purpose

The purpose of this study is to analyze the impacts of combined utilization of multi-jet impinging cooling of nanofluids with magnetic field and porous layer on the cooling performance, as effective cooling with impinging jets are obtained for various energy systems, including photovoltaic panels, electronic cooling and many other convective heat transfer applications.

Design/methodology/approach

Finite element method is used to explore the magnetic field effects with the inclusion of porous layer on the cooling performance efficiency of slot nanojet impingement system. Impacts of pertinent parameters such as Reynolds number (Re between 250 and 1,000), strength of magnetic field (Ha between 0 and 30), permeability of the porous layer (Da between 0.001 and 0.1) on the cooling performance for flat and wavy surface configurations are explored.

Findings

It is observed that the average Nusselt number (Nu) rises by about 17% and 20.4% for flat and wavy configuration while temperature drop of 4 K is obtained when Re is increased to 1,000 from 250. By using magnetic field at the highest strength, the average Nu rises by about 29% and 7% for flat and wavy cases. Porous layer permeability is an effective way of controlling the cooling performance while up to 44.5% variations in the average Nu is obtained by varying its value. An optimization routine is used to achieve the highest cooling rate while the optimum parameter set is obtained as (Re, Ha, Da, γ, sx) = (1,000, 30, 0.07558, 86.28, 2.585) for flat surface and (Re, Ha, Da, γ, sx) = (1,000, 30, 0.07558, 71.85, 2.329) for wavy surface configurations.

Originality/value

In thermal systems, cooling system design is important for thermal management of various energy systems, including fuel cells, photovoltaic panels, electronic cooling and many others. Impinging jets are considered as effective way of cooling because of its ability to give higher local heat transfer coefficients. This paper offers novel control tools, such as magnetic field, installation of porous layer and hybrid nano-liquid utilization for control of cooling performance with multiple impinging jets.



中文翻译:

利用波浪状多孔层、磁场和具有狭缝射流冲击的混合纳米流体对导电面板冷却性能的影响

目的

本研究的目的是分析纳米流体与磁场和多孔层的多射流撞击冷却联合利用对冷却性能的影响,因为撞击射流的有效冷却可用于各种能源系统,包括光伏电池板,电子冷却和许多其他对流传热应用。

设计/方法/途径

采用有限元法研究了多孔层夹杂物的磁场对槽纳米射流冲击系统冷却性能效率的影响。雷诺数(Re 在 250 到 1,000 之间)、磁场强度(Ha 在 0 到 30 之间)、多孔层的磁导率(Da 在 0.001 到 0.1 之间)等相关参数对平面和波浪形表面配置的冷却性能的影响被探索。

发现

据观察,当 Re 从 250 增加到 1,000 时,平坦和波浪形配置的平均努塞尔数 (Nu) 分别增加了约 17% 和 20.4%,而温度下降了 4 K。通过使用最高强度的磁场,对于扁平和波浪形的情况,平均 Nu 上升了约 29% 和 7%。多孔层渗透率是控制冷却性能的有效方式,而通过改变其值可以获得高达 44.5% 的平均 Nu 变化。优化程序用于实现最高冷却速率,同时获得最佳参数集为 (Re, Ha, Da, γ, sx) = (1,000, 30, 0.07558, 86.28, 2.585) 对于平面和 (Re, Ha , Da, γ, sx) = (1,000, 30, 0.07558, 71.85, 2.329) 对于波浪形表面配置。

原创性/价值

在热系统中,冷却系统设计对于各种能源系统的热管理非常重要,包括燃料电池、光伏面板、电子冷却等。冲击射流被认为是有效的冷却方式,因为它能够提供更高的局部传热系数。本文提供了新颖的控制工具,例如磁场、多孔层的安装和混合纳米液体利用,用于控制多个撞击射流的冷却性能。

更新日期:2022-07-14
down
wechat
bug