当前位置: X-MOL 学术Can. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental methods in chemical engineering: Pressure
The Canadian Journal of Chemical Engineering ( IF 1.6 ) Pub Date : 2022-07-07 , DOI: 10.1002/cjce.24533
Kaiqiao Wu 1 , Federico Galli 2 , Jacopo de Tommaso 3 , Gregory S. Patience 3 , J. Ruud van Ommen 1
Affiliation  

Pressure and temperature are the most important state variables for monitoring physicochemical processes to detect deviations that might lead to explosions and to verify levels, flow rate, and solids/gas hold-up. Pressure fluctuations in multi-phase systems identify regime changes and flow anomalies. Pressure signals are the first indicator of a process upset and are tied into distributed control systems (DCS) to sound alarms when they drift to high or low and activate safety interlocks in the case of high, high-high, low, and low-low conditions. To maximize the information, it requires that pressure gauges (transducers) are installed and calibrated precisely. Pressure measuring devices include manometers, aneroid devices like bellows and Bourdon gauges, and electronic instruments—piezoresistive, piezoelectric, and capacitive. The electronic elements have the advantage of higher precision and faster response times to measure fluctuations. The Bourdon gauges are standard equipment for pressure regulators and are mounted on the exterior of vessels and pipes to facilitate visual inspections. Over 2 million articles indexed by the Web of Science Core collection mention pressure, and in 2021, chemical engineering ranks had over 7000 articles—only multidisciplinary material sciences and energy and fuels had more. A bibliometric analysis identified five research clusters: temperature, combustion, and kinetics; separation, membranes, and energy efficiency; carbon dioxide (capture and storage), water, and thermodynamics; methane, adsorption, and transport phenomena (e.g., diffusion and permeability); and modelling, optimization, and computational fluid dynamics (CFD).

中文翻译:

化学工程中的实验方法:压力

压力和温度是最重要的状态变量,用于监测物理化学过程以检测可能导致爆炸的偏差并验证液位、流速和固体/气体滞留量。多相系统中的压力波动可识别状态变化和流动异常。压力信号是过程失调的第一个指示器,并与分布式控制系统 (DCS) 相关联,当它们漂移到高或低时发出警报,并在高、高-高、低和低-低的情况下激活安全联锁条件。为了最大化信息,需要精确安装和校准压力表(传感器)。压力测量设备包括压力计、无液设备(如波纹管和波登压力表)以及电子仪器——压阻式、压电式和电容式。电子元件具有测量波动的精度更高和响应时间更快的优点。波登压力表是压力调节器的标准设备,安装在容器和管道的外部,便于目视检查。Web of Science 核心合集中有超过 200 万篇文章提到了压力,而在 2021 年,化学工程排名有 7000 多篇文章——只有多学科材料科学和能源与燃料有更多。文献计量分析确定了五个研究集群:温度、燃烧和动力学;分离、膜和能源效率;二氧化碳(捕获和储存)、水和热力学;甲烷、吸附和传输现象(例如,扩散和渗透);以及建模、优化和计算流体动力学 (CFD)。
更新日期:2022-07-07
down
wechat
bug