当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A hybrid INDI control for ensuring flying qualities in failures of Xcg measurement subsystem
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ( IF 1.0 ) Pub Date : 2022-07-08 , DOI: 10.1177/09544100221113429
Chongsup Kim 1
Affiliation  

Modern version of fighter aircraft has a wide range of longitudinal center-of-gravity (Xcg) travel due to wide-range fuel tanks layout, various weapons, many payload stations, and so on. The wide Xcg travel degrades flying qualities of a closed-loop control system; moreover, a catastrophic accident can be caused by loss of stability due to the wide Xcg travel in severe cases. For this reason, the inner-loop control law generally employs additional feedback variables such as weight and Xcg position to guarantee the flying qualities and satisfy stability requirements. Nevertheless, this design approach can seriously deteriorate the flight safety and stability of the aircraft in the event of fuel mismanagement and Xcg measurement subsystem failures. Therefore, additional design technique should be considered to ensure the flight safety in response to the situation of the failure conditions. This paper proposes two types of a hybrid Incremental Nonlinear Dynamic Inversion control to guarantee the minimum flight safety for return to base in case of fuel mismanagement and Xcg measurement subsystem failures. The frequency-domain linear analysis and time-domain simulations were performed based on a supersonic trainer mathematical model to evaluate the performances of the proposed control methods. The evaluation results confirm that the proposed control method satisfies the level of the required flying qualities and ensure flight safety even in the event of the subsystem failures for the Xcg measurement.



中文翻译:

Xcg测量子系统故障时确保飞行质量的混合INDI控制

现代版战斗机由于宽范围的油箱布局、各种武器、许多有效载荷站等,具有大范围的纵向重心 (Xcg) 行程。宽 Xcg 行程降低了闭环控制系统的飞行质量;此外,在严重的情况下,由于 Xcg 行程过宽,稳定性丧失,可能会导致灾难性事故。为此,内环控制律一般采用重量、Xcg位置等附加反馈变量来保证飞行质量和满足稳定性要求。然而,这种设计方法会在燃油管理不善和 Xcg 测量子系统故障的情况下严重降低飞机的飞行安全性和稳定性。所以,应考虑附加设计技术,以确保飞行安全,以应对故障情况的情况。本文提出了两种类型的混合增量非线性动态反演控制,以保证在燃料管理不善和 Xcg 测量子系统故障的情况下返回基地的最低飞行安全。基于超音速训练器数学模型进行频域线性分析和时域仿真,以评估所提出的控制方法的性能。评估结果证实,所提出的控制方法满足所需的飞行质量水平,即使在 Xcg 测量子系统故障的情况下也能确保飞行安全。本文提出了两种类型的混合增量非线性动态反演控制,以保证在燃料管理不善和 Xcg 测量子系统故障的情况下返回基地的最低飞行安全。基于超音速训练器数学模型进行频域线性分析和时域仿真,以评估所提出的控制方法的性能。评估结果证实,所提出的控制方法满足所需的飞行质量水平,即使在 Xcg 测量子系统故障的情况下也能确保飞行安全。本文提出了两种类型的混合增量非线性动态反演控制,以保证在燃料管理不善和 Xcg 测量子系统故障的情况下返回基地的最低飞行安全。基于超音速训练器数学模型进行频域线性分析和时域仿真,以评估所提出的控制方法的性能。评估结果证实,所提出的控制方法满足所需的飞行质量水平,即使在 Xcg 测量子系统故障的情况下也能确保飞行安全。基于超音速训练器数学模型进行频域线性分析和时域仿真,以评估所提出的控制方法的性能。评估结果证实,所提出的控制方法满足所需的飞行质量水平,即使在 Xcg 测量子系统故障的情况下也能确保飞行安全。基于超音速训练器数学模型进行频域线性分析和时域仿真,以评估所提出的控制方法的性能。评估结果证实,所提出的控制方法满足所需的飞行质量水平,即使在 Xcg 测量子系统故障的情况下也能确保飞行安全。

更新日期:2022-07-08
down
wechat
bug