当前位置: X-MOL 学术Algebra Univers. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Minimum proper extensions in some lattices of subalgebras
Algebra universalis ( IF 0.6 ) Pub Date : 2022-07-07 , DOI: 10.1007/s00012-022-00784-3
Anthony W. Hager , Brian Wynne

Let \({\mathcal {A}}\) be a class of algebras with \(I, A \in {\mathcal {A}}\). We interpret the lattice-theoretic “strictly meet irreducible/cover” situation \(B < C\) in lattices of the form \(S_{{\mathcal {A}}}(I,A)\) of all subalgebras of A containing I, where we call such \(B < C\) a minimum proper extension (mpe), and show that this means B is maximal in \(S_{{\mathcal {A}}}(I,A)\) for not containing some \(r \in A\) and C is generated by B and r. For the class \({\mathcal {G}}\) of groups, we determine the mpe’s in \(S_{{\mathcal {G}}}(\{0\},{\mathbb {Q}})\) using invariants of Beaumont and Zuckerman and show that these (plus utilization of a Hamel basis) determine the mpe’s in \(S_{{\mathcal {G}}}(\{0\},{\mathbb {R}})\). Finally, we show that the latter yield some (not all) of the minimum proper essential extensions in \(\mathbf {W}^{*}\), the category of Archimedean \(\ell \)-groups with strong order unit and unit-preserving \(\ell \)-group homomorphisms.



中文翻译:

子代数的某些格中的最小适当扩展

\({\mathcal {A}}\)是具有\(I, A \in {\mathcal {A}}\)的代数类。我们在 A的所有子代数\(S_{{\mathcal {A}}}(I,A)\)形式的格中解释格理论“严格满足不可约/覆盖”情况\(B < C\)包含I,我们称这样的\(B < C\)最小适当扩展(mpe),并表明这意味着B\(S_{{\mathcal {A}}}(I,A)\)中是最大的因为不包含一些\(r \in A\)C是由Br生成的。对于班级\({\mathcal {G}}\)组,我们使用不变量确定\(S_{{\mathcal {G}}}(\{0\},{\mathbb {Q}})\)中的 mpe Beaumont 和 Zuckerman 的研究并表明这些(加上 Hamel 基的利用)决定了\(S_{{\mathcal {G}}}(\{0\},{\mathbb {R}})\)中的 mpe 。最后,我们表明后者在\(\mathbf {W}^{*}\)中产生了一些(不是全部)最小适当的基本扩展,这是具有强序单元的阿基米德\(\ell \)组的类别和保持单位的\(\ell \) -群同态。

更新日期:2022-07-08
down
wechat
bug