当前位置: X-MOL 学术Nat. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthetic memory circuits for stable cell reprogramming in plants
Nature Biotechnology ( IF 33.1 ) Pub Date : 2022-07-04 , DOI: 10.1038/s41587-022-01383-2
James P B Lloyd 1 , Florence Ly 1 , Patrick Gong 1 , Jahnvi Pflueger 2 , Tessa Swain 2 , Christian Pflueger 1, 2 , Elliott Fourie 1 , Muhammad Adil Khan 1 , Brendan N Kidd 1 , Ryan Lister 1, 2
Affiliation  

Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.



中文翻译:

用于植物稳定细胞重编程的合成记忆电路

植物生物技术主要依赖于一组有限的遗传部分,这些部分定制时空和条件表达模式的能力有限。合成基因电路有可能通过由生物部分构成的处理单元集成多个可定制的输入信号,以产生可预测和可编程的输出。在这里,我们展示了一套用于植物的基于功能性重组酶的基因电路。我们首先建立了一系列与植物细胞功能兼容的关键基因电路组件。然后我们使用这些开发了一系列操作逻辑门,使用拟南芥原生质体和体内的识别功能(激活)和否定功能(抑制),展示了它们在复杂多细胞生物体中对转录活动进行可编程操作的效用。具体来说,使用重组酶和植物控制元件,我们在 YES、OR 和 AND 门中激活转基因,并在 NOT、NOR 和 NAND 门中抑制它们;我们还实现了结合激活和抑制的 A NIMPLY B 门。通过使用基因重组,这些电路在表达和记录过去的刺激方面产生稳定的长期变化。这种高度紧凑的可编程基因电路平台为将复杂的转录程序和以前未实现的性状设计到植物中提供了新的功能。我们还实现了结合激活和抑制的 A NIMPLY B 门。通过使用基因重组,这些电路在表达和记录过去的刺激方面产生稳定的长期变化。这种高度紧凑的可编程基因电路平台为将复杂的转录程序和以前未实现的性状设计到植物中提供了新的功能。我们还实现了结合激活和抑制的 A NIMPLY B 门。通过使用基因重组,这些电路在表达和记录过去的刺激方面产生稳定的长期变化。这种高度紧凑的可编程基因电路平台为将复杂的转录程序和以前未实现的性状设计到植物中提供了新的功能。

更新日期:2022-07-04
down
wechat
bug