当前位置: X-MOL 学术J. Chem. Inf. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computation of Oxidation Potentials of Solvated Nucleobases by Static and Dynamic Multilayer Approaches
Journal of Chemical Information and Modeling ( IF 5.6 ) Pub Date : 2022-06-30 , DOI: 10.1021/acs.jcim.2c00234
Jesús Lucia-Tamudo 1 , Gustavo Cárdenas 1 , Nuria Anguita-Ortiz 1 , Sergio Díaz-Tendero 1, 2, 3 , Juan J Nogueira 1, 2
Affiliation  

The determination of the redox properties of nucleobases is of paramount importance to get insight into the charge-transfer processes in which they are involved, such as those occurring in DNA-inspired biosensors. Although many theoretical and experimental studies have been conducted, the value of the one-electron oxidation potentials of nucleobases is not well-defined. Moreover, the most appropriate theoretical protocol to model the redox properties has not been established yet. In this work, we have implemented and evaluated different static and dynamic approaches to compute the one-electron oxidation potentials of solvated nucleobases. In the static framework, two thermodynamic cycles have been tested to assess their accuracy against the direct determination of oxidation potentials from the adiabatic ionization energies. Then, the introduction of vibrational sampling, the effect of implicit and explicit solvation models, and the application of the Marcus theory have been analyzed through dynamic methods. The results revealed that the static direct determination provides more accurate results than thermodynamic cycles. Moreover, the effect of sampling has not shown to be relevant, and the results are improved within the dynamic framework when the Marcus theory is applied, especially in explicit solvent, with respect to the direct approach. Finally, the presence of different tautomers in water does not affect significantly the one-electron oxidation potentials.

中文翻译:

通过静态和动态多层方法计算溶剂化核碱基的氧化电位

确定核碱基的氧化还原特性对于深入了解它们所涉及的电荷转移过程至关重要,例如在 DNA 启发的生物传感器中发生的那些。尽管已经进行了许多理论和实验研究,但核碱基的单电子氧化电位的值并没有明确定义。此外,尚未建立模拟氧化还原特性的最合适的理论协议。在这项工作中,我们实施并评估了不同的静态和动态方法来计算溶剂化核碱基的单电子氧化电位。在静态框架中,已经测试了两个热力学循环,以评估它们与从绝热电离能量直接确定氧化电位的准确性。然后,通过动态方法分析了振动采样的引入、隐式和显式求解模型的效果以及马库斯理论的应用。结果表明,静态直接测定比热力学循环提供更准确的结果。此外,采样的效果并未显示出相关性,并且当应用 Marcus 理论时,特别是在显式溶剂中,相对于直接方法,结果在动态框架内得到了改进。最后,水中不同互变异构体的存在不会显着影响单电子氧化电位。结果表明,静态直接测定比热力学循环提供更准确的结果。此外,采样的效果并未显示出相关性,并且当应用 Marcus 理论时,特别是在显式溶剂中,相对于直接方法,结果在动态框架内得到了改进。最后,水中不同互变异构体的存在不会显着影响单电子氧化电位。结果表明,静态直接测定比热力学循环提供更准确的结果。此外,采样的效果并未显示出相关性,并且当应用 Marcus 理论时,特别是在显式溶剂中,相对于直接方法,结果在动态框架内得到了改进。最后,水中不同互变异构体的存在不会显着影响单电子氧化电位。
更新日期:2022-06-30
down
wechat
bug