当前位置: X-MOL 学术Blood › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Whole-genome CRISPR screening identifies N-glycosylation as a genetic and therapeutic vulnerability in CALR-mutant MPNs.
Blood ( IF 21.0 ) Pub Date : 2022-09-15 , DOI: 10.1182/blood.2022015629
Jonas S Jutzi 1 , Anna E Marneth 1 , Michele Ciboddo 1, 2, 3 , Angel Guerra-Moreno 1 , María José Jiménez-Santos 4 , Anastasia Kosmidou 1, 5 , James W Dressman 6 , Hongyan Liang 6 , Rebecca Hamel 1, 7 , Patricia Lozano 1 , Elisa Rumi 2, 8 , John G Doench 9 , Jason Gotlib 10 , Anandi Krishnan 11 , Shannon Elf 1, 3 , Fátima Al-Shahrour 4 , Ann Mullally 1, 9, 12
Affiliation  

Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.

中文翻译:


全基因组 CRISPR 筛选将 N-糖基化确定为 CALR 突变 MPN 的遗传和治疗脆弱性。



钙网蛋白 (CALR) 突变是骨髓增生性肿瘤 (MPN) 中常见的疾病引发事件。尽管CALR突变导致MPN的生物学机制已被阐明,但目前还没有针对CALR突变MPN的克隆选择性疗法。为了识别 CALR 突变 MPN 中独特的遗传依赖性,我们在突变 CALR 转化的造血细胞中进行了全基因组聚类规则间隔短回文重复 (CRISPR) 敲除筛选。我们发现,与对照细胞相比,突变型 CALR 转化细胞中 N-糖基化途径(以及其他)中的基因存在差异性缺失。使用针对 CRISPR 筛选中发现的独特漏洞的集中药理学体外筛选,我们发现 N-糖基化的化学抑制通过减少 MPL 细胞表面表达而损害突变 CALR 转化细胞的生长。我们用 N-糖基化抑制剂 2-脱氧葡萄糖 (2-DG) 治疗 Calr 突变敲入小鼠,发现与野生型细胞相比,Calr 突变细胞对 2-DG 具有优先敏感性,并且关键 MPN 疾病正常化特征。为了验证我们在原代人类细胞中的发现,我们进行了巨核细胞集落形成单位(CFU-MK)测定。我们发现,与来自健康供体的骨髓相比,N-糖基化抑制显着减少了患者来源的 CALR 突变骨髓中 CFU-MK 的形成。总的来说,我们的研究结果推动了 CALR 突变 MPN 克隆选择性治疗的发展。
更新日期:2022-06-28
down
wechat
bug