当前位置: X-MOL 学术Freshwater Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomass, community composition and N:P recycling ratios of zooplankton in northern high-latitude lakes with contrasting levels of N deposition and dissolved organic carbon
Freshwater Biology ( IF 2.8 ) Pub Date : 2022-06-22 , DOI: 10.1111/fwb.13956
Ann‐Kristin Bergström 1 , Danny C. P. Lau 1, 2 , Peter D. F. Isles 3 , Anders Jonsson 1 , Irena F. Creed 4
Affiliation  

1 INTRODUCTION

Global environmental changes, driven by changing climate, recovery from acidification, and changes in land-cover and land-use activities, have resulted in the depletion of essential nutrients such as nitrogen (N) and phosphorus (P) (Canham et al., 2012; Eimers et al., 2009; Huser et al., 2018; Isles et al., 2018) and the enrichment of terrestrial coloured dissolved organic carbon (DOC; also called lake browning) in northern lakes (de Wit et al., 2016; Finstad et al., 2016; Monteith et al., 2007). These environmental changes are influencing both phytoplankton and zooplankton biomass (Creed et al., 2018; Solomon et al., 2015). Recent studies have shown that declining N deposition together with lake browning will reduce lake water dissolved inorganic N to total P (DIN:TP) ratios (Bergström et al., 2020; Isles et al., 2018) and promote N limitation for phytoplankton (Isles et al., 2020). Concurrently, these changes are associated with lower phytoplankton biomass (Bergström & Jansson, 2006) but higher phytoplankton mineral quality (Bergström et al., 2020). However, it is still not clear to what extent changes in lake water DIN:TP and DOC and associated changes in phytoplankton biomass and mineral quality might influence trophic transfer efficiency (i.e., the efficiency of energy and carbon transfer across trophic levels; see Sterner & Hessen, 1994) impacting zooplankton productivity in northern lakes.

To grow and reproduce efficiently, zooplankton require sufficient phytoplankton biomass (Brett et al., 2009; Taipale et al., 2013; Wenzel et al., 2021) and phytoplankton mineral quality (Persson et al., 2007; Sterner & Hessen, 1994). Several empirical and model studies have illustrated that the relationship between phytoplankton biomass and lake DOC appears to be unimodal. This is because of the influence of DOC on both nutrient availability (positive effect) and light availability (negative effect) (Bergström & Karlsson, 2019; Isles et al., 2021; Kelly et al., 2018; Vasconcelos et al., 2019). Decreasing lake DIN:TP (Isles et al., 2018) is therefore expected to interact with increasing DOC (Isles et al., 2020) to alter phytoplankton biomass available for zooplankton (Bergström & Karlsson, 2019; Deininger et al., 2017a; Isles et al., 2021).

In addition to phytoplankton biomass, changes in lake DOC and DIN:TP, which influence light relative to nutrient availability (Sterner et al., 1997), also affect phytoplankton mineral quality measured in terms of seston C:N:P stoichiometry. A higher phytoplankton mineral quality is associated with lower seston C:P and N:P. Thus, in clear-water subarctic lakes, seston C:P and N:P are lower in lakes with lower lake DIN:TP and lower atmospheric N deposition than in those with higher lake DIN:TP and higher atmospheric N deposition (Bergström et al., 2020). Further, in these subarctic lakes, when lake DOC increases, seston C:P and N:P decline (Bergström et al., 2020; Sterner et al., 1997). Whether comparable patterns in seston C:N:P stoichiometry exist in brown-water boreal lakes remains unknown. Compared to their subarctic counterparts, boreal catchments are more efficient in retaining DIN from N deposition (Bergström, 2010; Elser et al., 2009; Hessen, 2013), and in releasing TP bound to terrestrial dissolved organic matter (Bergström et al., 2018; Hessen, 2013; Isles et al., 2020). In combination, these processes lower DIN:TP and light availability in boreal lakes (Isles et al., 2020). Light availability will limit the extent to which phytoplankton can change their C:N:P stoichiometry following changes in lake DIN:TP (Bergström et al., 2021; Deininger et al., 2017a; Sterner et al., 1997). Responses in phytoplankton mineral quality to changes in lake DIN:TP and DOC are therefore expected to be different from the responses in phytoplankton biomass (Deininger et al., 2017a; Bergström et al., 2020; Isles et al., 2021). Consequently, changes in phytoplankton biomass might not necessarily translate into changes in zooplankton biomass (McCauley & Kalff, 1981), due to concurrent changes in phytoplankton mineral quality (Bergström et al., 2021; Deininger et al., 2017b).

Another unknown is the extent to which differences in lake DIN:TP ratio and DOC concentration across subarctic and boreal lakes affect the N:P recycling ratio of zooplankton. In contrast to phytoplankton, zooplankton have been considered relatively homeostatic in terms of their stoichiometry, with high N:P stoichiometry among copepods and low N:P stoichiometry among cladocerans especially for Daphnia (Andersen & Hessen, 1991). However, the degree of homeostasis and variation in N:P stoichiometry can vary between species and taxonomic groups of zooplankton (Bergström et al., 2018; Hood & Sterner, 2010), and can be influenced by temperature (Bullejos et al., 2014), size distributions (Elser et al., 1988), growth rates (Elser et al., 2000; Vrede et al., 2002), reproduction modes (Ventura & Catalan, 2005), and ontogeny (Villar-Argaiz et al., 2002). Although these different factors influence the N:P stoichiometry of zooplankton, phytoplankton should have a greater capacity in changing their N:P stoichiometry than do zooplankton (Diehl, 2007; Sterner & Hessen, 1994), and the N:P recycling ratio of zooplankton is likely to be lower in lakes with low N deposition, low DIN:TP, and low seston N:P (Bergström et al., 2015). However, the extent to which the N:P recycling ratios of zooplankton are impacted by changes in levels of N deposition is likely to be moderated by lake DOC and its impact on lake DIN:TP (see above; Isles et al., 2020), as well as by its impact on the zooplankton community composition where increasing DOC and nutrient concentrations seem to favour cladocerans (low N:P) over calanoid copepods (high N:P) (Bergström et al., 2018; Pace, 1986).

In this study, we measured water chemistry, phytoplankton biomass (chlorophyll-a [Chl-a] and Chl-a per unit of lake water TP [Chl-a:TP]), seston mineral quality (C:P, N:P), as well as zooplankton biomass, community composition, and C:N:P stoichiometry in 33 Swedish headwater lakes across subarctic-to-boreal gradients with different levels of N deposition (low N in the north [Västerbotten, boreal; Abisko, subarctic] vs. high N in the south [Värmland, boreal; Jämtland, subarctic]). We estimated the long-term trends in N deposition in the study sites in 1997–2017 using national monitoring data. We also estimated nutrient imbalances and the N:P recycling ratios of zooplankton using ecological stoichiometry models. We used all these data to explore whether differences in lake water DIN:TP and DOC induced differences in phytoplankton biomass (in terms of Chl-a and Chl-a:TP) and phytoplankton mineral quality (in terms of seston C:P and N:P), and their subsequent effects on zooplankton biomass, C:N:P stoichiometry, and zooplankton N:P recycling ratio. Our predictions were that:
  1. Lake DIN:TP is high in lakes with low DOC concentrations and declines in lakes with higher DOC concentrations.
  2. Phytoplankton biomass is higher (Chl-a and Chl-a:TP is higher) but phytoplankton mineral quality is lower (seston C:P and N:P is higher) in southern lakes with higher lake DIN and DIN:TP (Jämtland [subarctic] and Värmland [boreal]) compared to northern lakes with lower lake DIN and DIN:TP (Abisko [subarctic] and Västerbotten [boreal]).
  3. Phytoplankton mineral quality is higher (seston C:P and N:P is lower) in lakes with higher DOC concentrations.
  4. Zooplankton biomass increases with increasing phytoplankton biomass and mineral quality.
  5. Zooplankton community composition shifts from dominance of calanoid copepods (high N:P) to dominance of cladocerans (low N:P) with increasing lake DIN:TP and DOC concentration.
  6. The N:P recycling ratio of zooplankton is lower in northern lakes with lower lake DIN and DIN:TP than in southern lakes and declines with higher lake DOC concentration.
Our findings provide insights into the effects of ongoing changes in lake water chemistry. Decreases in DIN:TP reflect decreases in atmospheric N deposition caused by reduced N emissions and hence a reverse of a previous anthropogenic perturbation, with lakes presumably gradually reverting to something closer to their natural state with regards to N. In contrast, increases in DOC reflect increases in lake browning caused, at least in part, by climate change and hence an anthropogenic perturbation that is moving lakes away from their natural state, both in terms of its effect on DIN:TP (as DOC increases, TP increases), and on light availability. We explored the cumulative effects of these environmental stressors in subarctic and boreal lakes.


中文翻译:

北部高纬度湖泊浮游动物的生物量、群落组成和 N:P 再循环比与 N 沉降和溶解有机碳水平对比

1 简介

受气候变化、酸化恢复以及土地覆盖和土地利用活动变化驱动的全球环境变化导致氮 (N) 和磷 (P) 等必需营养素的消耗(Canham 等人,  2012 ; Eimers et al.,  2009 ; Huser et al.,  2018 ; Isles et al.,  2018 ) 和北部湖泊中陆地有色溶解有机碳 (DOC; 也称为湖褐变) 的富集 (de Wit et al.,  2016 年;Finstad 等人,  2016 年;Monteith 等人,  2007 年)。这些环境变化正在影响浮游植物和浮游动物的生物量(Creed 等人,  2018 年;Solomon 等人, 2015 年)。最近的研究表明,随着湖泊褐变的减少,N 沉降会降低湖水中溶解的无机 N 与总 P (DIN:TP) 的比率(Bergström 等人,  2020 年;Isles 等人,  2018 年)并促进对浮游植物的 N 限制( Isles 等人,  2020 年)。同时,这些变化与较低的浮游植物生物量有关(Bergström & Jansson,  2006 年)但较高的浮游植物矿物质质量(Bergström 等人,  2020 年))。然而,目前尚不清楚湖水 DIN:TP 和 DOC 的变化以及浮游植物生物量和矿物质质量的相关变化可能在多大程度上影响营养转移效率(即跨营养级的能量和碳转移效率;见 Sterner 和Hessen,  1994 ) 影响北部湖泊的浮游动物生产力。

为了有效地生长和繁殖,浮游动物需要足够的浮游植物生物量(Brett et al.,  2009 ; Taipale et al.,  2013 ; Wenzel et al., 2021)和浮游植物矿物质质量(Persson et al.,  2007 ; Sterner & Hessen,  1994 ) )。一些经验和模型研究表明,浮游植物生物量与湖泊 DOC 之间的关系似乎是单峰的。这是因为 DOC 对养分有效性(正面影响)和光照有效性(负面影响)都有影响(Bergström 和 Karlsson,  2019 年;Isles 等人,  2021 年;Kelly 等人,  2018 年;Vasconcelos 等人,  2019 年))。因此,减少湖泊 DIN:TP(Isles 等人,  2018 年)预计会与增加的 DOC(Isles 等人,  2020 年)相互作用,从而改变可供浮游动物使用的浮游植物生物量(Bergström 和 Karlsson,  2019 年;Deininger 等人,  2017a 年; Isles 等人,  2021 年)。

除了浮游植物生物量外,湖泊 DOC 和 DIN:TP 的变化会影响光与养分的有效性(Sterner 等人,  1997 年),也会影响以 seston C:N:P 化学计量测量的浮游植物矿物质质量。较高的浮游植物矿物质质量与较低的 seston C:P 和 N:P 相关。因此,在清水亚北极湖泊中,湖泊 DIN:TP 和大气 N 沉降量较低的湖泊中的 seston C:P 和 N:P 低于湖泊 DIN:TP 和大气 N 沉降量较高的湖泊(Bergström 等人.,  2020 年)。此外,在这些亚北极湖泊中,当湖泊 DOC 增加时,seston C:P 和 N:P 下降(Bergström 等人,  2020 年;Sterner 等人,  1997 年))。褐水北方湖泊中是否存在 seston C:N:P 化学计量的可比模式仍然未知。与它们的亚北极对应物相比,北方集水区更有效地保留了来自 N 沉积的 DIN(Bergström,  2010;Elser 等人,  2009;Hessen,  2013 年),以及释放与陆地溶解有机物结合的 TP(Bergström 等人,  2018 年;黑森州,  2013 年;Isles 等人,  2020 年)。结合起来,这些过程降低了北方湖泊中的 DIN:TP 和光照可用性(Isles 等人,  2020 年)。光照可用性将限制浮游植物在 DIN:TP 湖泊变化后改变其 C:N:P 化学计量的程度(Bergström 等人, 2021 ; Deininger 等人,  2017a;斯特纳等人,  1997 年)。因此,预计浮游植物矿物质量对湖泊 DIN:TP 和 DOC 变化的响应与浮游植物生物量的响应不同(Deininger 等人,  2017a;Bergström 等人,2020;Isles 等人,  2021)。因此,由于浮游植物矿物质质量的同时变化(Bergström 等人,  2021 年;Deininger 等人,  2017b ) ,浮游植物生物量的变化不一定会转化为浮游动物生物量的变化(McCauley 和 Kalff,  1981 年)。

另一个未知数是亚北极和北方湖泊之间湖泊 DIN:TP 比率和 DOC 浓度的差异对浮游动物 N:P 再循环比率的影响程度。与浮游植物相比,浮游动物在化学计量方面被认为是相对平衡的,桡足类的 N:P 化学计量比高,枝角类动物的 N:P 化学计量低,尤其是水蚤(Andersen & Hessen,  1991 )。然而,N:P 化学计量的稳态程度和变化可能因浮游动物的物种和分类群而异(Bergström 等人,  2018 年;Hood & Sterner,  2010 年),并且可能受温度影响(Bullejos 等人,  2014 年) ),尺寸分布(Elser 等人, 1988 年)、增长率(Elser 等人,  2000 年;Vrede 等人,  2002 年)、繁殖模式(Ventura 和 Catalan,  2005 年)和个体发育(Villar-Argaiz 等人,  2002 年)。尽管这些不同的因素会影响浮游动物的 N:P 化学计量,但浮游植物在改变其 N:P 化学计量方面的能力应该比浮游动物更大 (Diehl,  2007 ; Sterner & Hessen,  1994 ),以及浮游动物的 N:P 再循环比在低 N 沉降、低 DIN:TP 和低 seston N:P 的湖泊中可能会更低(Bergström 等,  2015)。然而,浮游动物的 N:P 再循环比率受 N 沉降水平变化影响的程度可能会受到湖泊 DOC 及其对湖泊 DIN:TP 的影响(见上文;Isles 等人,  2020 年) ,以及它对浮游动物群落组成的影响,其中增加的 DOC 和养分浓度似乎有利于枝角类动物(低 N:P)而不是 calanoid 桡足类(高 N:P)(Bergström 等人,  2018 年;佩斯,  1986 年)。

在这项研究中,我们测量了每单位湖水 TP [ Chl- a ] 的水化学、浮游植物生物量(叶绿素-a [ Chl- a ] 和Chl- a:TP])、seston 矿物质量 (C:P, N:P) 以及浮游动物生物量、群落组成和 C:N:P 化学计量在 33 个瑞典源头湖泊中跨越亚北极到寒带梯度的不同水平的N 沉积(北部的低 N [Västerbotten,北极;Abisko,亚北极] 与南部的高 N [Värmland,北极;Jämtland,亚北极])。我们使用国家监测数据估计了 1997-2017 年研究地点 N 沉降的长期趋势。我们还使用生态化学计量模型估计了浮游动物的养分失衡和 N:P 循环比。我们使用所有这些数据来探索湖水 DIN:TP 和 DOC 的差异是否会导致浮游植物生物量的差异(以叶绿素a和叶绿素a:TP) 和浮游植物矿物质质量(以 seston C:P 和 N:P 计),以及它们对浮游动物生物量、C:N:P 化学计量和浮游动物 N:P 再循环比的后续影响。我们的预测是:
  1. 湖泊 DIN:TP 在 DOC 浓度低的湖泊中较高,而在 DOC 浓度较高的湖泊中下降。
  2. 在具有较高湖泊 DIN 和 DIN:TP 的南部湖泊中,浮游植物生物量较高(Chl -a和Chl- a :TP 较高)但浮游植物矿物质量较低(seston C:P 和 N:P 较高)(Jämtland [亚北极] 和 Värmland [北方])与具有较低湖泊 DIN 和 DIN:TP 的北部湖泊(阿比斯库 [亚北极] 和 Västerbotten [北方])相比。
  3. 在 DOC 浓度较高的湖泊中,浮游植物矿物质量较高(seston C:P 和 N:P 较低)。
  4. 浮游动物生物量随着浮游植物生物量和矿物质质量的增加而增加。
  5. 随着湖泊 DIN:TP 和 DOC 浓度的增加,浮游动物群落组成从掌状桡足类(高 N:P)的优势转变为枝角类(低 N:P)的优势。
  6. 浮游动物的 N:P 再循环率在湖泊 DIN 和 DIN:TP 较低的北部湖泊中低于南部湖泊,随着湖泊 DOC 浓度的升高而下降。
我们的研究结果提供了对湖水化学持续变化影响的见解。DIN:TP 的减少反映了由于 N 排放减少导致的大气 N 沉降减少,因此与之前的人为扰动相反,湖泊可能逐渐恢复到接近其自然状态的 N。相比之下,DOC 的增加反映湖泊褐变的增加至少部分是由气候变化引起的,因此人为扰动使湖泊远离其自然状态,无论是在其对 DIN:TP 的影响(随着 DOC 增加,TP 增加),以及光的可用性。我们探索了这些环境压力源在亚北极和北方湖泊中的累积影响。
更新日期:2022-06-22
down
wechat
bug