当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Super-resolution optical microscopy using cylindrical vector beams
Nanophotonics ( IF 7.5 ) Pub Date : 2022-06-24 , DOI: 10.1515/nanoph-2022-0241
Min Liu 1, 2 , Yunze Lei 1 , Lan Yu 1 , Xiang Fang 1 , Ying Ma 1 , Lixin Liu 3 , Juanjuan Zheng 1 , Peng Gao 1
Affiliation  

Super-resolution optical microscopy, which gives access to finer details of objects, is highly desired for fields of nanomaterial, nanobiology, nanophotonics, etc. Many efforts, including tip optimization and illumination optimization etc., have been made in both near-field and far-field super-resolution microscopy to achieve a spatial resolution beyond the diffraction limit. The development of vector light fields opens up a new avenue for super-resolution optical microscopy via special illumination modes. Cylindrical vector beam (CVB) has been verified to enable resolution improvement in tip-scanning imaging, nonlinear imaging, stimulated emission depletion (STED) microscopy, subtraction imaging, superoscillation imaging, etc. This paper reviews recent advances in CVB-based super-resolution imaging. We start with an introduction of the fundamentals and properties of CVB. Next, strategies for CVB based super-resolution imaging are discussed, which are mainly implemented by tight focusing, depletion effect, plasmonic nanofocusing, and polarization matching. Then, the roadmap of super-resolution imaging with CVB illumination in the past two decades is summarized. The typical CVB-based imaging techniques in fields of both near-field and far-field microscopy are introduced, including tip-scanning imaging, nonlinear imaging, STED, subtraction imaging, and superoscillation imaging. Finally, challenges and future directions of CVB-illuminated super-resolution imaging techniques are discussed.

中文翻译:

使用圆柱矢量光束的超分辨率光学显微镜

纳米材料、纳米生物学、纳米光子学等领域非常需要超分辨率光学显微镜,它可以访问物体的更精细细节。在近场和近场领域都做出了许多努力,包括尖端优化和照明优化等。远场超分辨率显微镜,以实现超出衍射极限的空间分辨率。矢量光场的发展通过特殊照明模式为超分辨率光学显微镜开辟了一条新途径。圆柱矢量光束 (CVB) 已被验证可在尖端扫描成像、非线性成像、受激发射耗尽 (STED) 显微镜、减影成像、超振荡成像等方面提高分辨率。本文回顾了基于 CVB 的超分辨率的最新进展成像。我们首先介绍 CVB 的基本原理和属性。接下来,讨论了基于CVB的超分辨率成像策略,主要通过紧聚焦、耗尽效应、等离子体纳米聚焦和偏振匹配来实现。然后,总结了过去20年CVB照明超分辨率成像的路线图。介绍了近场和远场显微镜领域典型的基于CVB的成像技术,包括尖端扫描成像、非线性成像、STED、减法成像和超振荡成像。最后,讨论了 CVB 照明超分辨率成像技术的挑战和未来方向。等离子体纳米聚焦和偏振匹配。然后,总结了过去20年CVB照明超分辨率成像的路线图。介绍了近场和远场显微镜领域典型的基于CVB的成像技术,包括尖端扫描成像、非线性成像、STED、减法成像和超振荡成像。最后,讨论了 CVB 照明超分辨率成像技术的挑战和未来方向。等离子体纳米聚焦和偏振匹配。然后,总结了过去20年CVB照明超分辨率成像的路线图。介绍了近场和远场显微镜领域典型的基于CVB的成像技术,包括尖端扫描成像、非线性成像、STED、减法成像和超振荡成像。最后,讨论了 CVB 照明超分辨率成像技术的挑战和未来方向。和超振荡成像。最后,讨论了 CVB 照明超分辨率成像技术的挑战和未来方向。和超振荡成像。最后,讨论了 CVB 照明超分辨率成像技术的挑战和未来方向。
更新日期:2022-06-24
down
wechat
bug