当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of cross-sectional area and number of Fe nanoparticles on the thermal behavior of pool boiling heat transfer of the water-based nanofluid: A molecular dynamics study
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2022-06-27 , DOI: 10.1016/j.csite.2022.102242
Danhong Li , Changyong Jiang , Xia Cao , Hui Li , Maboud Hekmatifar , Roozbeh Sabetvand

Today, pool boiling heat transfer (HT) plays an important role in many industries and engineering systems. This study investigates the effect of factors such as cross-sectional area and the number of Fe nanoparticles (NPs) on pool boiling HT of water/Fe nanofluid (NF) in a microchannel. This research is performed using the molecular dynamics (MD) simulation. For this research, quantities such as maximum density, velocity, temperature, heat flux (HF) and phase change time are investigated. The results indicate that increasing the number of NPs reduces the phase-change duration. Adding the NPs to the base fluid improves the pool boiling HT. By reducing the cross-sectional area of the microchannel from 0.25 μm2 to 0.09 μm2, the HF increases, and as a result, the pool boiling HT occurs at a higher rate. So, reducing the cross-sectional area decreases the phase-change duration from 0.33 to 0.30 ns. NPs due to the increase in HT surface, increase in effective thermal conductivity and uniformity of temperature changes in the base fluid leads to a very large increase in the heat transfer coefficient (HTC). Finally, it is expected that using these simulations, optimization of water/Fe NF behavior to enhance the pool boiling HT in micro-scale (microchannels) and nanoscale applications is done.



中文翻译:

Fe纳米粒子截面积和数量对水基纳米流体池沸腾传热热行为的影响:分子动力学研究

如今,池沸腾传热 (HT) 在许多行业和工程系统中发挥着重要作用。本研究探讨了横截面积和 Fe 纳米颗粒 (NPs) 数量等因素对微通道中水/Fe 纳米流体 (NF) 的池沸腾 HT 的影响。这项研究是使用分子动力学 (MD) 模拟进行的。在这项研究中,研究了最大密度、速度、温度、热通量 (HF) 和相变时间等量。结果表明,增加 NP 的数量会减少相变持续时间。将 NP 添加到基础液中可提高池沸腾 HT。通过将微通道的横截面积从 0.25 μm 2减小到 0.09 μm 2,HF 增加,因此,池沸腾 HT 以更高的速率发生。因此,减小横截面积可将相变持续时间从 0.33 ns 减少到 0.30 ns。NPs 由于 HT 表面的增加、有效热导率的增加和基液中温度变化的均匀性导致传热系数 (HTC) 的非常大的增加。最后,预计使用这些模拟,优化水/Fe NF 行为以增强微尺度(微通道)和纳米尺度应用中的池沸腾 HT。

更新日期:2022-06-30
down
wechat
bug