当前位置: X-MOL 学术Veh. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Completion time minimization for multi-antenna UAV-enabled data collection in uncorrelated Rician fading
Vehicular Communications ( IF 5.8 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.vehcom.2022.100501
Liping Deng , Hong Jiang , He Xiao , Qiuyun Zhang , Ying Luo , Chun Wu , Changqing Ye

In 5G, the unmanned aerial vehicle (UAV) is regarded as an essential way to support energy-saving, reliable, and low-cost data collection in wireless sensor networks. However, UAV-based data collection inevitably suffers from more significant data collection delays due to the UAV movement time in large application scenarios. In this paper, we consider a UAV-enabled wireless sensor network under the uncorrelated Rician fading channel, where a multi-antenna UAV is dispatched to collect data from ground sensor nodes (SNs). The objective is to minimize the mission completion time, including UAV flight and data collection time, by jointly optimizing UAV trajectory, UAV-SN transmission scheduling, and trajectory-based time allocation under the constraints of UAV speed, outage probability, data size, and transmission power. To solve this nonconvex problem, we decompose it into two subproblems: 1) trajectory optimization and 2) UAV-SN transmission scheduling and trajectory-based time allocation optimization. In the trajectory optimization, we first rewrite the outage probability constraint into the communication distance constraint and propose a Spiral-based method to find the shortest trajectory covering all SNs. Then, we propose a scheduling initialization algorithm and employ alternating optimization to solve the UAV-SN transmission scheduling and trajectory-based time allocation optimization. Finally, numerical results show that the proposed algorithm outperforms the benchmark and typical algorithms in terms of the mission completion time through a large number of experiments.



中文翻译:

非相关 Rician 衰落中多天线 UAV 数据收集的完成时间最小化

在 5G 时代,无人机(UAV)被认为是支持无线传感器网络中节能、可靠和低成本数据采集的重要方式。然而,由于无人机在大型应用场景中的移动时间,基于无人机的数据采集不可避免地会遭受更显着的数据采集延迟。在本文中,我们考虑在不相关的 Rician 衰落信道下启用无人机的无线传感器网络,其中调度多天线无人机从地面传感器节点 (SN) 收集数据。目标是在无人机速度、中断概率、数据大小和传输功率。为了解决这个非凸问题,我们将其分解为两个子问题:1)轨迹优化和 2)UAV-SN 传输调度和基于轨迹的时间分配优化。在轨迹优化中,我们首先将中断概率约束改写为通信距离约束,并提出了一种基于螺旋的方法来寻找覆盖所有 SN 的最短轨迹。然后,我们提出了一种调度初始化算法,并采用交替优化来解决无人机-SN传输调度和基于轨迹的时间分配优化。最后,数值结果表明,通过大量实验,该算法在任务完成时间方面优于基准算法和典型算法。1) 轨迹优化和 2) UAV-SN 传输调度和基于轨迹的时间分配优化。在轨迹优化中,我们首先将中断概率约束改写为通信距离约束,并提出了一种基于螺旋的方法来寻找覆盖所有 SN 的最短轨迹。然后,我们提出了一种调度初始化算法,并采用交替优化来解决无人机-SN传输调度和基于轨迹的时间分配优化。最后,数值结果表明,通过大量实验,该算法在任务完成时间方面优于基准算法和典型算法。1) 轨迹优化和 2) UAV-SN 传输调度和基于轨迹的时间分配优化。在轨迹优化中,我们首先将中断概率约束改写为通信距离约束,并提出了一种基于螺旋的方法来寻找覆盖所有 SN 的最短轨迹。然后,我们提出了一种调度初始化算法,并采用交替优化来解决无人机-SN传输调度和基于轨迹的时间分配优化。最后,数值结果表明,通过大量实验,该算法在任务完成时间方面优于基准算法和典型算法。我们首先将中断概率约束重写为通信距离约束,并提出一种基于螺旋的方法来找到覆盖所有 SN 的最短轨迹。然后,我们提出了一种调度初始化算法,并采用交替优化来解决无人机-SN传输调度和基于轨迹的时间分配优化。最后,数值结果表明,通过大量实验,该算法在任务完成时间方面优于基准算法和典型算法。我们首先将中断概率约束重写为通信距离约束,并提出一种基于螺旋的方法来找到覆盖所有 SN 的最短轨迹。然后,我们提出了一种调度初始化算法,并采用交替优化来解决无人机-SN传输调度和基于轨迹的时间分配优化。最后,数值结果表明,通过大量实验,该算法在任务完成时间方面优于基准算法和典型算法。

更新日期:2022-06-23
down
wechat
bug