当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering van der Waals Materials for Advanced Metaphotonics
Chemical Reviews ( IF 62.1 ) Pub Date : 2022-06-24 , DOI: 10.1021/acs.chemrev.2c00048
Han Lin 1, 2 , Zhenfang Zhang 3 , Huihui Zhang 4 , Keng-Te Lin 1 , Xiaoming Wen 4 , Yao Liang 4 , Yang Fu 4 , Alan Kin Tak Lau 4 , Tianyi Ma 1, 4 , Cheng-Wei Qiu 5 , Baohua Jia 1, 2, 4
Affiliation  

The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light–matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light–matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.

中文翻译:

用于高级元光子学的工程范德瓦尔斯材料

二维材料出色的化学和物理特性,加上它们的原子级薄特性,使它们成为超光子器件集成和构造的理想候选者,这需要深亚波长光-物质相互作用来实现超越在天然材料中观察到的传统光学现象的光学功能。除了它们的固有特性外,通过化学或物理工程进一步操纵二维材料特性的可能性极大地增强了它们的能力,激发了光与物质相互作用的新科学,导致现有功能设备的性能飞跃,并催生了新的元光子以前无法实现的设备。全面了解二维材料的固有特性,本综述提供了化学和物理工程方法的方法和能力、由此产生的属性修改和新功能以及超光子设备的应用。通过回顾各个方面的详细进展和最先进的成果,本次跨学科综合综述对突出挑战和未来方向进行了深刻分析,旨在提供该领域的整体发展图景。二维材料元光子学,推动这个快速兴起和繁荣的领域快速进步。
更新日期:2022-06-24
down
wechat
bug