当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-06-24 , DOI: 10.1021/acsami.2c06700
Tianpeng Jiao 1 , Meng Xia 1 , Zirong Chen 1 , Yue Zou 1 , Gaopan Liu 1 , Ang Fu 1 , Libao Chen 2 , Zhengliang Gong 3 , Yong Yang 1, 4 , Jianming Zheng 1
Affiliation  

All-solid-state batteries (ASSBs), particularly based on sulfide solid-state electrolytes (SSEs), are expected to meet the requirements of high-energy-density energy storage. However, the unstable interface between the ceramic pellets and lithium (Li) metal can induce unconstrained Li-dendrite growth with safety concerns. Herein, we design a carbon fluoride–silver (CFx–Ag) composite to modify the SSEs. As lithium fluoride (LiF) nanocrystals can be in situ formed through electrochemical reactions, this LiF-enriched modification layer with high surface energy can more effectively suppress Li dendrite penetration and interfacial reactions between the SSEs and anode. Remarkably, the all-solid-state symmetric cells using a lithium–boron alloy (LiB) anode can stably work to above 2,500 h under 0.5 mA cm–2 and 2 mAh cm–2 at 60 °C without shorting. A modified LiB||LiNi0.6Mn0.2Co0.2O2 (NMC622) full cell also demonstrates an improved capacity retention and high Coulombic efficiency (99.9%) over 500 cycles. This work provides an advanced solid-state interface architecture to address Li-dendrite issues of ASSBs.

中文翻译:

用于稳定全固态电池的富锂界面改性层的原位构建

全固态电池(ASSB),特别是基于硫化物固态电解质(SSE)的电池,有望满足高能量密度储能的要求。然而,陶瓷颗粒和锂 (Li) 金属之间不稳定的界面会导致锂枝晶不受约束地生长,这存在安全隐患。在此,我们设计了一种氟化碳-银 (CF x -Ag) 复合材料来修饰 SSE。由于氟化锂(LiF)纳米晶体可以通过电化学反应原位形成,这种具有高表面能的富LiF修饰层可以更有效地抑制锂枝晶的渗透和SSE与负极之间的界面反应。值得注意的是,使用锂硼合金 (LiB) 阳极的全固态对称电池可以在 0.5 mA cm 下稳定工作至 2,500 h 以上–2和 2 mAh cm –2在 60 °C 时没有短路。改进的 LiB||LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) 全电池在 500 次循环后也表现出改进的容量保持率和高库仑效率 (99.9%)。这项工作提供了一种先进的固态接口架构来解决 ASSB 的锂枝晶问题。
更新日期:2022-06-24
down
wechat
bug