当前位置: X-MOL 学术IEEE Open J. Power Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Efficient Electro-Thermal Compact Model of SiC Power MOSFETs Including Third Quadrant Behavior
IEEE Open Journal of Power Electronics ( IF 5.0 ) Pub Date : 2022-06-13 , DOI: 10.1109/ojpel.2022.3182275
Arman Ur Rashid 1 , Md Maksudul Hossain 1 , Yuheng Wu 1 , Hayden Carlton 1 , Alan Mantooth 1 , Britt Brooks 2
Affiliation  

This paper presents an efficient physics-based electro-thermal model that solves some advanced problems of modeling Silicon Carbide (SiC) power MOSFETs. It is the first electro-thermal model that simulates the temperature dependency of the first and the third quadrant characteristics, including the reverse recovery of the body diode accurately and efficiently. It extends from a previous work that demonstrated the isothermal physics-based model of the gate-dependent body diode. Physics-based temperature scaling of the first and third quadrant allows simulation of the self-heating effect in a wide range of temperatures (27 °C–200 °C), even for the synchronous operation. Moreover, a physics-based modeling approach is taken to include gate-voltage dependent non-linearity of the gate to source capacitance (Cgs). Also, a physic-based segmented cascaded method is taken to accurately model the Miller (Crss), and the output (Coss) capacitances at the low and very high drain to source voltage regions. Further, the temperature-dependent breakdown mechanism is included for reliable system design. Double Pulse Tests (DPTs) at various temperatures up to 200 °C validate the model's accuracy. Lastly, a synchronous buck converter test demonstrates the model's ability to predict junction temperatures, validating the model's accuracy and efficiency in a continuous operation with self-heating.

中文翻译:

包含第三象限行为的 SiC 功率 MOSFET 的高效电热紧凑模型

本文提出了一种有效的基于物理的电热模型,该模型解决了碳化硅 (SiC) 功率 MOSFET 建模的一些高级问题。它是第一个准确有效地模拟第一和第三象限特性的温度依赖性的电热模型,包括体二极管的反向恢复。它从先前的工作扩展而来,该工作展示了基于等温物理的栅极相关体二极管模型。第一象限和第三象限的基于物理的温度缩放允许在很宽的温度范围(27°C-200°C)内模拟自热效应,即使是同步操作也是如此。此外,采用基于物理的建模方法来包括栅源电容 (Cgs) 的与栅电压相关的非线性。还,采用基于物理的分段级联方法对低漏极到源极电压区域的米勒 (Crss) 和输出 (Coss) 电容进行精确建模。此外,还包括与温度相关的故障机制,以实现可靠的系统设计。在高达 200 °C 的各种温度下进行的双脉冲测试 (DPT) 验证了模型的准确性。最后,同步降压转换器测试展示了模型预测结温的能力,验证了模型在具有自热的连续运行中的准确性和效率。在高达 200 °C 的各种温度下进行的双脉冲测试 (DPT) 验证了模型的准确性。最后,同步降压转换器测试展示了模型预测结温的能力,验证了模型在具有自热的连续运行中的准确性和效率。在高达 200 °C 的各种温度下进行的双脉冲测试 (DPT) 验证了模型的准确性。最后,同步降压转换器测试展示了模型预测结温的能力,验证了模型在具有自热的连续运行中的准确性和效率。
更新日期:2022-06-13
down
wechat
bug