当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transparent Quasi-Random Structures for Multimodal Light Trapping in Ultrathin Solar Cells with Broad Engineering Tolerance
ACS Photonics ( IF 6.5 ) Pub Date : 2022-06-23 , DOI: 10.1021/acsphotonics.2c00472
Eduardo Camarillo Abad 1 , Hannah J Joyce 2 , Louise C Hirst 1, 3
Affiliation  

Waveguide modes are well-known to be a valuable light-trapping resource for absorption enhancement in solar cells. However, their scarcity in the thinnest device stacks compromises the multiresonant performance required to reach the highest efficiencies in ultrathin devices. We demonstrate that enriching the modal structure on such reduced length-scales is possible by integrating transparent semiconductor/dielectric scattering structures to the device architecture as opposed to more widely studied metallic textures. This phenomenon allows transparent quasi-random structures to emerge as strong light-trapping candidates for ultrathin solar cells, given that their broad scattering profiles are well-suited to exploit the increased number of waveguide modes for multiresonant absorption enhancement. A thorough study of the design space of quasi-random textures comprising more than 1500 designs confirms the superiority of transparent structures over a metallic embodiment, identifies broad and flexible design requirements to achieve optimal performances, and demonstrates photon harvesting capabilities leading to 20% efficiency with an 80 nm GaAs absorber. Our light-trapping strategy can be applied to a wide range of material systems and device architectures, is compatible with scalable low-cost fabrication techniques, and can assist current trends to reach the highest efficiencies in ever-thinner photovoltaics.

中文翻译:

具有广泛工程公差的超薄太阳能电池中多模态光捕获的透明准随机结构

众所周知,波导模式是一种用于太阳能电池吸收增强的有价值的光捕获资源。然而,它们在最薄的器件堆栈中的稀缺性损害了在超薄器件中达到最高效率所需的多谐振性能。我们证明,通过将透明的半导体/电介质散射结构集成到器件架构中,而不是更广泛研究的金属纹理,可以在这种减小的长度尺度上丰富模态结构。这种现象允许透明的准随机结构作为超薄太阳能电池的强光捕获候选物出现,因为它们的宽散射分布非常适合利用增加的波导模式数量来增强多谐振吸收。对包含 1500 多种设计的准随机纹理的设计空间进行深入研究,证实了透明结构优于金属实施例,确定了实现最佳性能的广泛灵活的设计要求,并展示了光子捕获能力,可实现 20% 的效率80 nm GaAs 吸收器。我们的光捕获策略可以应用于广泛的材料系统和器件架构,与可扩展的低成本制造技术兼容,并且可以帮助当前趋势在更薄的光伏器件中达到最高效率。并展示了使用 80 nm GaAs 吸收器实现 20% 效率的光子收集能力。我们的光捕获策略可以应用于广泛的材料系统和器件架构,与可扩展的低成本制造技术兼容,并且可以帮助当前趋势在更薄的光伏器件中达到最高效率。并展示了使用 80 nm GaAs 吸收器实现 20% 效率的光子收集能力。我们的光捕获策略可以应用于广泛的材料系统和器件架构,与可扩展的低成本制造技术兼容,并且可以帮助当前趋势在更薄的光伏器件中达到最高效率。
更新日期:2022-06-23
down
wechat
bug