当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unusual deformation-induced martensitic transformation in Fe-Co-Ni-Cr-Mn high entropy alloy thin films
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2022-06-24 , DOI: 10.1016/j.jallcom.2022.165959
Nan Wang , Qingping Cao , Xiaodong Wang , Shaoqing Ding , Dongxian Zhang , Jian-Zhong Jiang

Deformation-induced martensitic transformation in Fe-Co-Ni-Cr-Mn high entropy alloy (HEA) thin film with nanocolumnar growth feature are revealed to readily occur at intermediate deposition power rather than low and high deposition power ranges. The high probability of deformation-induced martensitic transformation from face-centered cubic (FCC) to hexagonal close-packed (HCP) phase in 150 W-film results in low nanoindentation hardness and compressive yield strength, in comparison with 60 W- and 210 W-films. Dependence of the martensitic transformation probability has been explained in terms of the competition between grain size effect and nanocolumn cohesion effect on the phase metastability. The increased grain size with deposition power favors the mechanical instability of FCC parent phase caused by the weakened slip obstruction, while the enhanced nanocolumn cohesion with deposition power hinders the formation of HCP martensite due to the increased activation energy for martensitic transformation. The grain size effect is dominated over the cohesion between nanocolumn at low deposition power range, while column cohesion effect is dominant at high deposition power range, which gives rise to the crossover of FCC-to-HCP with deposition power. This work might provide a deeper understanding in phase metastability of sputtered films, for instance, the effect of deposition power on deformation-induced martensitic transformation.



中文翻译:

Fe-Co-Ni-Cr-Mn高熵合金薄膜中的异常变形诱发马氏体转变

具有纳米柱状生长特征的 Fe-Co-Ni-Cr-Mn 高熵合金 (HEA) 薄膜中的形变诱导马氏体相变在中等沉积功率范围内很容易发生,而不是在低和高沉积功率范围内。与 60 W 和 210 W 相比,在 150 W 薄膜中变形诱导马氏体从面心立方 (FCC) 相转变为六方密排 (HCP) 相的概率很高,导致纳米压痕硬度和抗压屈服强度较低-电影。马氏体相变概率的依赖性已经根据晶粒尺寸效应和纳米柱凝聚效应对相亚稳态的竞争进行了解释。随着沉积功率的增加晶粒尺寸的增加有利于由减弱的滑移阻碍引起的 FCC 母相的机械不稳定性,而由于马氏体转变的活化能增加,沉积能力增强的纳米柱内聚力阻碍了HCP马氏体的形成。在低沉积功率范围内,晶粒尺寸效应对纳米柱之间的内聚力占主导地位,而在高沉积功率范围内,柱内聚力效应占主导地位,这导致了 FCC-to-HCP 与沉积功率的交叉。这项工作可能会为溅射薄膜的相亚稳性提供更深入的理解,例如,沉积功率对变形诱导的马氏体转变的影响。在低沉积功率范围内,晶粒尺寸效应对纳米柱之间的内聚力占主导地位,而在高沉积功率范围内,柱内聚力效应占主导地位,这导致了 FCC-to-HCP 与沉积功率的交叉。这项工作可能会为溅射薄膜的相亚稳性提供更深入的理解,例如,沉积功率对变形诱导的马氏体转变的影响。在低沉积功率范围内,晶粒尺寸效应对纳米柱之间的内聚力占主导地位,而在高沉积功率范围内,柱内聚力效应占主导地位,这导致了 FCC-to-HCP 与沉积功率的交叉。这项工作可能会为溅射薄膜的相亚稳性提供更深入的理解,例如,沉积功率对变形诱导的马氏体转变的影响。

更新日期:2022-06-28
down
wechat
bug