当前位置: X-MOL 学术Polymer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electric-field assisted ring-opening polymerization: On the kinetics and product properties of DGEBA/aniline model system
Polymer ( IF 4.1 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.polymer.2022.125085
Wenkang Tu , Andrzej Dzienia , Paulina Maksym , Daniel M. Duarte , Aparna Beena Unni , Katarzyna Chat , Kamil Kaminski , Karolina Adrjanowicz

This work demonstrates the effect of a high dc bias field (up to 160 kV/cm) on the polyaddition reaction of the modeled epoxy resin system. Polymerization of bisphenol A diglycidyl ether (DGEBA) supported by high electric field results in obtaining epoxides with significantly increased molecular weight, which is seven-fold higher than the zero-field reference (Mn = 4.7 kg/mol). We also found a markedly reduced dispersity (Р= 1.52 at 0 kV/cm, Đ = 1.21 at 160 kV/cm). The molecular weight and dispersity of obtained polymers change almost linearly with the reaction time. By following polymerization kinetics in the real-time of the experiment, via dielectric spectroscopy, we observe slowing down the reaction progress at dc fields of E = 160 kV/cm, compared to the zero-field case, E = 0 kV/cm. The polymer materials obtained in the presence/absence of static electric fields exhibit distinctly different glass transition temperatures. Our study highlights a better control over the reaction and product properties attained by using only the magnitude of the applied field as the control variable. Thus, a high electric field could provide an alternative pathway in synthesizing and developing advanced polymer materials using simpler, “green”, less-expensive, and technologically demanding approaches.



中文翻译:

电场辅助开环聚合:DGEBA/苯胺模型体系的动力学和产物性质

这项工作展示了高直流偏置场(高达 160 kV/cm)对建模环氧树脂系统的加聚反应的影响。高电场支持的双酚 A 二缩水甘油醚 (DGEBA) 聚合导致获得分子量显着增加的环氧化物,比零场参考 ( Mn =  4.7 kg/mol) 高 7 倍。我们还发现分散度显着降低( 0 kV/cm 时 D = 1.52,160 kV/cm 时Đ =  1.21)。所得聚合物的分子量和分散度几乎随反应时间线性变化。通过在实验的实时跟踪聚合动力学,通过介电光谱,我们观察到在E的直流场下反应进程减慢 = 160 kV/cm,与零场情况相比,E  = 0 kV/cm。在存在/不存在静电场的情况下获得的聚合物材料表现出明显不同的玻璃化转变温度。我们的研究强调了通过使用施加场的大小作为控制变量来更好地控制反应和产物特性。因此,高电场可以为使用更简单、“绿色”、成本更低且技术要求高的方法合成和开发先进聚合物材料提供替代途径。

更新日期:2022-06-23
down
wechat
bug