当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery
Energy Storage Materials ( IF 20.4 ) Pub Date : 2022-06-24 , DOI: 10.1016/j.ensm.2022.06.037
Zhiheng Ren , Jixiao Li , Yangyang Gong , Chuan Shi , Jianneng Liang , Yongliang Li , Chuanxin He , Qianling Zhang , Xiangzhong Ren

Reasonably combining ceramic solid-state electrolytes (SSEs) and polymer-based SSEs to create versatile composite SSEs has provided new enlightenment for the development of solid-state lithium metal batteries (SSLMBs). Here, different integration ways of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with an electrospinned 3D polyacrylonitrile (PAN) nanofiber and a polymer electrolyte formed by in-situ polymerization reaction were investigated. Firstly blending LLZTO ceramic with 3D PAN nanofiber followed by filling with polymer electrolyte into the spaces can offer the composite SSE a higher ionic conductivity (2.06 × 10−3 S·cm−1), the highest lithium transference number (0.5), and the highest mechanical strength (2.85 MPa). It can operate in Li symmetric cells over 1000 h with the potential of 0.07 V under a current density of 0.2 mA·cm−2, and make Li-LiFePO4 solid-state batteries (SSBs) excellent cycling performance (86.3% retention after 500 cycles at 0.5 C). It also delivers excellent electrochemical performances in 4.3 V or 4.5 V high voltage SSBs. In contrast, when LLZTO is absent or added through simple mixing without integration into PAN network, the electrochemical performances of SSEs and SSLMBs are inferior. Mechanism study suggests that the direct contact of LLZTO and succinonitrile (SN) will initiate the decomposition of SN, leading to the formation of a C=N-C barrier layer and further degradation of electrochemical performance.



中文翻译:

探究陶瓷固态电解质填料在高性能固态锂金属电池复合电解质中的集成方式

将陶瓷固态电解质(SSEs)与聚合物基SSEs合理结合,打造多功能复合SSEs,为固态锂金属电池(SSLMBs)的发展提供了新的启示。在这里,研究了 Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) 与静电纺丝 3D 聚丙烯腈 (PAN) 纳米纤维和通过原位聚合反应形成的聚合物电解质的不同集成方式。首先将LLZTO陶瓷与3D PAN纳米纤维混合,然后在空间中填充聚合物电解质,可以为复合SSE提供更高的离子电导率(2.06 × 10 -3 S·cm -1)、最高的锂迁移数 (0.5) 和最高的机械强度 (2.85 MPa)。它可以在0.2 mA·cm -2的电流密度下以0.07 V的电势在Li对称电池中运行1000 h以上,制备Li-LiFePO 4固态电池 (SSB) 出色的循环性能(在 0.5 C 下 500 次循环后保持率 86.3%)。它还在 4.3 V 或 4.5 V 高压 SSB 中提供出色的电化学性能。相比之下,当 LLZTO 不存在或通过简单混合而不集成到 PAN 网络中时,SSE 和 SSLMB 的电化学性能较差。机理研究表明,LLZTO与丁二腈(SN)的直接接触会引发SN的分解,导致形成C=NC阻挡层,进一步降低电化学性能。

更新日期:2022-06-29
down
wechat
bug