当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insights into the Interfacial Contact and Charge Transport of Gas-Sensing Liquid Metal Marbles
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-06-23 , DOI: 10.1021/acsami.2c06908
Yuan Chi 1 , Jialuo Han 1 , Jiewei Zheng 1 , Jiong Yang 1 , Zhenbang Cao 1 , Mohammad B Ghasemian 1 , Md Arifur Rahim 1 , Kourosh Kalantar-Zadeh 1 , Priyank Kumar 1 , Jianbo Tang 1
Affiliation  

Understanding the interfacial contacts between liquid metals and substrate materials is becoming increasingly important for the fast-rising liquid metal-enabled technologies. However, for such technologies, probing the contact behavior and interfacial charge transport has remained challenging due to the deformable nature of liquid metals and the presence of the surface oxide layer. Here, we encapsulate eutectic gallium indium (EGaIn) micro-/nanodroplets with tungsten trioxide (WO3) nanoparticles to form a WO3/EGaIn liquid metal marble network, in which the interfacial contact of the intrinsically semiconducting WO3 governs the charge transport. We investigate the interfacial structures and charge transport characteristics under different contact conditions and various gaseous environments. The results suggest that establishing a WO3/EGaIn heterostructure leads to near-ohmic contact behaviors and also the emergence of localized surface plasmon resonance. Density functional theory calculations of the WO3/EGaIn interface support the experiments by revealing atomistic attractions between EGaIn alloy and the O atoms from WO3, resulting in a Fermi level shift. We also show that the efficient interfacial charge transport of the liquid metal marble network results in an enhanced gas-sensing response. This work paves the way for the possibility of studying other liquid metal/semiconductor contacts for applications in soft electronics and optics.

中文翻译:

深入了解气敏液态金属大理石的界面接触和电荷传输

了解液态金属和基板材料之间的界面接触对于快速发展的液态金属技术变得越来越重要。然而,对于此类技术,由于液态金属的可变形性质和表面氧化层的存在,探索接触行为和界面电荷传输仍然具有挑战性。在这里,我们用三氧化钨 (WO 3 ) 纳米粒子封装共晶镓铟 (EGaIn) 微/纳米液滴,形成 WO 3 /EGaIn 液态金属大理石网络,其中本征半导体 WO 3的界面接触控制电荷传输。我们研究了不同接触条件和各种气体环境下的界面结构和电荷传输特性。结果表明,建立WO 3 /EGaIn 异质结构导致近欧姆接触行为以及局部表面等离子体共振的出现。WO 3 /EGaIn 界面的密度泛函理论计算通过揭示 EGaIn 合金与来自 WO 3的 O 原子之间的原子吸引力来支持实验,导致费米能级位移。我们还表明,液态金属大理石网络的有效界面电荷传输导致增强的气敏响应。这项工作为研究其他液态金属/半导体触点在软电子和光学中的应用铺平了道路。
更新日期:2022-06-23
down
wechat
bug