当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupledFe3O4/BaTiO3(001) heterostructure
Physical Review B ( IF 3.2 ) Pub Date : 2022-06-24 , DOI: 10.1103/physrevb.105.224419
Gyanendra Panchal , Danny Kojda , Sophia Sahoo , Anita Bagri , Hemant Singh Kunwar , Lars Bocklage , Anjali Panchwanee , Vasant G. Sathe , Katharina Fritsch , Klaus Habicht , Ram Janay Choudhary , Deodutta M. Phase

We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20–300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide.

中文翻译:

磁弹性耦合 Fe3O4/BaTiO3(001) 异质结构中磁电传输特性的应变和电场控制

我们研究了电场诱导应变对磁弹性耦合人造多铁性材料的磁和电传输特性的控制34/钛酸钡3异质结构。在这个34/钛酸钡3异质结构34薄膜以双边域的形式外延生长,类似于底层的交流条纹域钛酸钡3(001)基质。通过原位电场相关磁化测量,我们证明了磁各向异性的外在控制和外延的特征 Verwey 金属 - 绝缘体转变34通过应变介导的逆磁电耦合,薄膜在 20-300 K 的宽温度范围内。此外,我们观察到应变诱导的磁和电传输特性的调制34薄膜穿过热驱动的本征铁电体和结构相变钛酸钡3基质。原位电场相关拉曼测量表明,电场不会显着改变反相边界缺陷。34薄膜一旦在沉积后热力学稳定并且磁性的改变主要是由应变引起的晶格畸变和磁各向异性引起的。这些结果为在经典的高度相关的过渡金属氧化物中实现磁化的电控制提供了框架。
更新日期:2022-06-24
down
wechat
bug