当前位置: X-MOL 学术Int. J. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determination of multi-physics effective properties, and actuation response of triply periodic minimal surface based novel photostrictive composites: A finite element analysis
International Journal of Engineering Science ( IF 5.7 ) Pub Date : 2022-06-23 , DOI: 10.1016/j.ijengsci.2022.103726
Diwakar Singh , Raj Kiran , Komal Chawla , Rajeev Kumar , Vishal S. Chauhan , Rahul Vaish

This paper presents the novel triply periodic minimal surface (TPMS) based photostrictive composite as an alternative to naturally occurring photostrictive materials. The non-thermal, light-induced mechanical strain i.e., photostriction involves the simultaneous action of photovoltaic effect and converse piezoelectric effect. All the effective elastic, dielectric, piezoelectric, and pyroelectric properties are evaluated using the finite element analysis and compared with traditional micromechanical models for fibrous composites. Degenerated shell element is used to simulate the actuation response of unimorph cantilever and simply supported beams bonded with TPMS based photostrictive composite. The proposed photostrictive composite consists of poly{4,8-bis[5-(2-ethyl-hexyl) thiophen-2-yl] benzo[1,2-b:4,5-b’] dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethyl-hexyl) carbonyl] thieno[3,4-b] thiophene-4,6-diyl} (PTB7-Th) as photovoltaic polymer matrix and Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 (PMN-35PT) as TPMS—based filler material. The proposed TPMS based photostrictive composite induces 10 times larger actuation than 0–3 photostrictive composite. Also, the maximum deflection (3.22×105 m) of cantilever smart beam, achieved with Schoen-I-WP based photostrictive composite, is more than that achieved with Schoen-gyroid based photostrictive composite i.e., 2.78×105 m. Similar trends are obtained for simply supported smart beam where the center deflection for Schoen-I-WP based photostrictive composite and Schoen-gyroid based photostrictive composite are found to be 4.04×106 m and 3.49×106 m, respectively. The proposed novel photostrictive composite has potential for future wireless actuation applications.



中文翻译:

基于三周期最小表面的新型光致伸缩复合材料的多物理场有效特性和驱动响应的确定:有限元分析

本文介绍了一种新型的基于三周期最小表面 (TPMS) 的光致伸缩复合材料,作为天然光致伸缩材料的替代品。非热光致机械应变即光致伸缩涉及光伏效应和逆压电效应的同时作用。使用有限元分析评估所有有效的弹性、介电、压电和热电性能,并与纤维复合材料的传统微机械模型进行比较。退化壳单元用于模拟与TPMS基光致伸缩复合材料粘合的单晶悬臂梁和简支梁的驱动响应。所提出的光致伸缩复合材料由聚{4,8-bis[5-(2-ethyl-hexyl) thiophen-2-yl] benzo[1,2-b:4,5-b'] dithiophene-2 组成,1/3 Nb 2/3 )O 3 –0.35PbTiO 3 (PMN-35PT) 作为基于 TPMS 的填充材料。所提出的基于 TPMS 的光致伸缩复合材料引起的驱动比 0-3 光致伸缩复合材料大 10 倍。此外,最大挠度(3.22×10-5m) 使用基于 Schoen-I-WP 的光致伸缩复合材料实现的悬臂智能梁比使用基于 Schoen-gyroid 的光致伸缩复合材料实现的更高,即,2.78×10-5米。对于简支智能梁也获得了类似的趋势,其中发现基于 Schoen-I-WP 的光致伸缩复合材料和基于 Schoen-gyroid 的光致伸缩复合材料的中心偏转为4.04×10-6米和3.49×10-6米,分别。所提出的新型光致伸缩复合材料具有未来无线驱动应用的潜力。

更新日期:2022-06-23
down
wechat
bug