当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2022-06-23 , DOI: 10.1021/acs.jpcc.2c01944
Elizabeth R Hopper 1, 2, 3 , Christina Boukouvala 1, 2 , Jérémie Asselin 1, 2 , John S Biggins 4 , Emilie Ringe 1, 2
Affiliation  

Materials that sustain localized surface plasmon resonances have a broad technology potential as attractive platforms for surface-enhanced spectroscopies, chemical and biological sensing, light-driven catalysis, hyperthermal cancer therapy, waveguides, and so on. Most plasmonic nanoparticles studied to date are composed of either Ag or Au, for which a vast array of synthetic approaches are available, leading to controllable size and shape. However, recently, alternative materials capable of generating plasmonically enhanced light–matter interactions have gained prominence, notably Cu, Al, In, and Mg. In this Perspective, we give an overview of the attributes of plasmonic nanostructures that lead to their potential use and how their performance is dictated by the choice of plasmonic material, emphasizing the similarities and differences between traditional and emerging plasmonic compositions. First, we discuss the materials limitation encapsulated by the dielectric function. Then, we evaluate how size and shape maneuver localized surface plasmon resonance (LSPR) energy and field distribution and address how this impacts applications. Next, biocompatibility, reactivity, and cost, all key differences underlying the potential of non-noble metals, are highlighted. We find that metals beyond Ag and Au are of competitive plasmonic quality. We argue that by thinking outside of the box, i.e., by looking at nonconventional materials such as Mg, one can broaden the frequency range and, more importantly, combine the plasmonic response with other properties essential for the implementation of plasmonic technologies.

中文翻译:


替代纳米等离子体金属的机遇和挑战:镁及其他金属



维持局部表面等离子体共振的材料具有广泛的技术潜力,可作为表面增强光谱、化学和生物传感、光驱动催化、高温癌症治疗、波导等领域的有吸引力的平台。迄今为止研究的大多数等离子体纳米颗粒由银或金组成,有多种合成方法可供选择,从而实现尺寸和形状可控。然而,最近,能够产生等离激元增强的光-物质相互作用的替代材料已经受到关注,特别是铜、铝、铟和镁。在本视角中,我们概述了等离激元纳米结构的属性,这些属性导致了其潜在用途,以及等离激元材料的选择如何决定其性能,强调了传统和新兴等离激元组合物之间的异同。首先,我们讨论介电函数封装的材料限制。然后,我们评估尺寸和形状如何操纵局域表面等离子共振 (LSPR) 能量和场分布,并解决这如何影响应用。接下来,强调生物相容性、反应性和成本,以及非贵金属潜力的所有关键差异。我们发现银和金以外的金属都具有竞争性的等离子体质量。我们认为,通过跳出框框思考,即通过研究镁等非常规材料,可以拓宽频率范围,更重要的是,将等离子体响应与实施等离子体技术所必需的其他特性结合起来。
更新日期:2022-06-23
down
wechat
bug