当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds
Light: Science & Applications ( IF 20.6 ) Pub Date : 2022-06-23 , DOI: 10.1038/s41377-022-00883-9
Jiao Geng 1, 2 , Wei Yan 1, 2 , Liping Shi 1, 2 , Min Qiu 1, 2
Affiliation  

It is always a great challenge to bridge the nano- and macro-worlds in nanoscience, for instance, manufacturing uniform nanogratings on a whole wafer in seconds instead of hours even days. Here, we demonstrate a single-step while extremely high-throughput femtosecond laser scanning technique to obtain wafer-scale, highly regular nanogratings on semiconductor-on-metal thin films. Our technique takes advantage of long-range surface plasmons-laser interference, which is regulated by a self-initiated seed. By controlling the scanning speed, two types of nanogratings are readily manufactured, which are produced by either oxidation or ablation. We achieve a record manufacturing speed (>1 cm2 s−1), with tunable periodicity of Λ < 1 µm. The fractional variation of their periodicity is evaluated to be as low as ∆Λ/Λ ≈ 0.5%. Furthermore, by utilizing the semiconductor-on-metal film-endowed interference effects, an extremely high energy efficiency is achieved via suppressing light reflection during femtosecond laser nano-processing. As the fabricated nanogratings exhibit multi-functionality, we exemplify their practical applications in highly sensitive refractive index sensing, vivid structural colors, and durable superhydrophilicity.



中文翻译:

表面等离激元干涉纳米光栅:晶圆级激光直接结构化在几秒钟内

在纳米科学中弥合纳米世界和宏观世界始终是一个巨大的挑战,例如,在几秒钟而不是几小时甚至几天内在整个晶片上制造均匀的纳米光栅。在这里,我们展示了一种单步高通量飞秒激光扫描技术,可在半导体金属薄膜上获得晶圆级、高度规则的纳米光栅。我们的技术利用了由自发种子调节的远程表面等离子体激光干涉。通过控制扫描速度,很容易制造两种类型的纳米光栅,它们是通过氧化或烧蚀产生的。我们实现了创纪录的制造速度(>1 cm 2  s -1),可调周期为Λ < 1 微米。其周期性的分数变化被评估为低至ΔΛ/Λ  ≈ 0.5%。此外,利用半导体对金属薄膜赋予的干涉效应,通过抑制飞秒激光纳米加工过程中的光反射,实现了极高的能量效率。由于制造的纳米光栅具有多功能性,我们举例说明了它们在高灵敏度折射率传感、生动的结构颜色和持久的超亲水性方面的实际应用。

更新日期:2022-06-23
down
wechat
bug