当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy dissipation and shock isolation using novel metamaterials
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2022-06-22 , DOI: 10.1016/j.ijmecsci.2022.107464
Hongye Ma , Ke Wang , Haifeng Zhao , Wubin Shi , Jing Xue , Yanlin Zhou , Qiushi Li , Gong Wang , Bo Yan

Dissipating kinetic energy from shock and vibration is an urgent requirement for various applications in aerospace to mechanical engineering. This paper proposes a series of innovative metamaterials with planar and cylindrical patterns for elastic energy dissipation and shock isolation. The planar unit cell with two axes of reflectional symmetry mainly consists of two V-shaped regions, four identical right triangle regions, and narrow regions. The stereometric and cylindrical unit cells are obtained through rotating and convolving methods. The mechanics of energy dissipation and shock isolation are systematically investigated with finite element analysis (FEA), and experiments. Results show that various mechanical responses of unit cells are obtained through tailoring combined geometric parameters and additional boundary conditions, and the planar unit cell has stronger bistability than the cylindrical one. Then, the designed multilayers metamaterials exhibit considerable energy dissipation via the snap-through induced hysteric force-displacement behaviors, whose performances are influenced by geometric parameters and the number of layers. Lastly, the designed metamaterials could effectively suppress the acceleration responses via the snap-through behaviors induced by elastic instability. The shock response process and corresponding deformation mechanics are investigated experimentally and numerically. The designed metamaterials have potential in shock and vibration engineering.



中文翻译:

使用新型超材料的能量消散和隔震

消散来自冲击和振动的动能是航空航天到机械工程中各种应用的迫切要求。本文提出了一系列具有平面和圆柱形图案的创新超材料,用于弹性消能和隔震。具有两个反射对称轴的平面晶胞主要由两个V形区域、四个相同的直角三角形区域和狭窄区域组成。通过旋转和卷积方法获得立体和圆柱形单元格。通过有限元分析 (FEA) 和实验系统地研究了能量耗散和隔震的力学。结果表明,通过调整组合几何参数和附加边界条件,可以获得晶胞的各种机械响应,并且平面晶胞比圆柱形晶胞具有更强的双稳态。然后,所设计的多层超材料通过快速通过引起的滞后力-位移行为表现出相当大的能量耗散,其性能受几何参数和层数的影响。最后,所设计的超材料可以通过弹性不稳定性引起的快速通过行为有效地抑制加速度响应。对冲击响应过程和相应的变形力学进行了实验和数值研究。所设计的超材料在冲击和振动工程中具有潜力。所设计的多层超材料通过快速通过引起的滞后力位移行为表现出相当大的能量耗散,其性能受几何参数和层数的影响。最后,所设计的超材料可以通过弹性不稳定性引起的快速通过行为有效地抑制加速度响应。对冲击响应过程和相应的变形力学进行了实验和数值研究。所设计的超材料在冲击和振动工程中具有潜力。所设计的多层超材料通过快速通过引起的滞后力位移行为表现出相当大的能量耗散,其性能受几何参数和层数的影响。最后,所设计的超材料可以通过弹性不稳定性引起的快速通过行为有效地抑制加速度响应。对冲击响应过程和相应的变形力学进行了实验和数值研究。所设计的超材料在冲击和振动工程中具有潜力。对冲击响应过程和相应的变形力学进行了实验和数值研究。所设计的超材料在冲击和振动工程中具有潜力。对冲击响应过程和相应的变形力学进行了实验和数值研究。所设计的超材料在冲击和振动工程中具有潜力。

更新日期:2022-06-26
down
wechat
bug