当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of hierarchical porous carbon nanofibrous membrane for better electrochemical performance in solid-state flexible supercapacitors
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2022-06-22 , DOI: 10.1016/j.jallcom.2022.165983
Xunlong Zhang , Liujun Cao , Yi Liao , Zhikun Qin , Zihao Yang , Ruiling Sun , Weibin Zhang , Han Li , Guilong Yan

The pore structure dramatically influences the electrochemical behavior of carbon nanofibers. The electrochemical performance of flexible carbon nanofibers as electrode materials for supercapacitors can be controlled by changing the size and quantity of pores. Hollow porous carbon nanofibers (HPCNFs) are prepared by coaxial electrostatic spinning and high-temperature carbonization. According to the nitrogen adsorption/desorption curve, HPCNF has a large specific surface area and good pore size distribution. In addition, cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) are used to analyze the electrochemical performance of HPCNF. Results show that the specific capacitance of hollow porous carbon nanofibers is 168.8 F/g at the current density of 1 A/g. Moreover, the specific capacitance retention of HPCNF is 95.61 % after 2000 cycles of charge and discharge at the current density of 5 A/g, exhibiting a stable cycle performance. In addition, solid-state supercapacitors assembled without any adhesives or conductive agents also show good cycle stability and excellent flexibility. As a result, HPCNF with flexibility, high specific surface area, and excellent electrochemical performance has broad prospects as an excellent electrode material for supercapacitors. Therefore, HPCNF has the advantages of good flexibility, high specific surface area, and excellent electrochemical performance. This paper proposes reasonable methods and creates more possibilities for future research and the application of flexible electrode materials for supercapacitors and flexible wearable electronic devices.



中文翻译:

设计分级多孔碳纳米纤维膜以提高固态柔性超级电容器的电化学性能

孔结构显着影响碳纳米纤维的电化学行为。柔性碳纳米纤维作为超级电容器电极材料的电化学性能可以通过改变孔的大小和数量来控制。通过同轴静电纺丝和高温碳化制备中空多孔碳纳米纤维(HPCNFs)。根据氮吸附/解吸曲线,HPCNF具有较大的比表面积和良好的孔径分布。此外,还采用循环伏安法 (CV)、恒电流充放电法 (GCD) 和电化学阻抗谱 (EIS) 来分析 HPCNF 的电化学性能。结果表明,在电流密度为1 A/g时,中空多孔碳纳米纤维的比电容为168.8 F/g。而且,HPCNF在5 A/g电流密度下充放电2000次循环后比电容保持率为95.61%,表现出稳定的循环性能。此外,在没有任何粘合剂或导电剂的情况下组装的固态超级电容器也表现出良好的循环稳定性和优异的柔韧性。因此,具有柔韧性、高比表面积和优异电化学性能的 HPCNF 作为超级电容器的优良电极材料具有广阔的前景。因此,HPCNF具有柔韧性好、比表面积高、电化学性能优异等优点。本文提出了合理的方法,为未来的研究和柔性电极材料在超级电容器和柔性可穿戴电子设备中的应用创造了更多可能。在5 A/g的电流密度下充放电2000次循环后为61%,表现出稳定的循环性能。此外,在没有任何粘合剂或导电剂的情况下组装的固态超级电容器也表现出良好的循环稳定性和优异的柔韧性。因此,具有柔韧性、高比表面积和优异电化学性能的 HPCNF 作为超级电容器的优良电极材料具有广阔的前景。因此,HPCNF具有柔韧性好、比表面积高、电化学性能优异等优点。本文提出了合理的方法,为未来的研究和柔性电极材料在超级电容器和柔性可穿戴电子设备中的应用创造了更多可能。在5 A/g的电流密度下充放电2000次循环后为61%,表现出稳定的循环性能。此外,在没有任何粘合剂或导电剂的情况下组装的固态超级电容器也表现出良好的循环稳定性和优异的柔韧性。因此,具有柔韧性、高比表面积和优异电化学性能的 HPCNF 作为超级电容器的优良电极材料具有广阔的前景。因此,HPCNF具有柔韧性好、比表面积高、电化学性能优异等优点。本文提出了合理的方法,为未来的研究和柔性电极材料在超级电容器和柔性可穿戴电子设备中的应用创造了更多可能。

更新日期:2022-06-25
down
wechat
bug