当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Encapsulation-Based Sodium Storage via Zn-Single-Atom Implanted Carbon Nanotubes
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-21 , DOI: 10.1002/adma.202202898
Xin Li 1 , Weibin Ye 2 , Pan Xu 1 , Haihong Huang 1 , Jingmin Fan 1 , Ruming Yuan 1 , Ming-Sen Zheng 1, 3 , Ming-Sheng Wang 2 , Quanfeng Dong 1, 3
Affiliation  

The properties of high theoretical capacity, low cost, and large potential of metallic sodium (Na) has strongly promoted the development of rechargeable sodium-based batteries. However, the issues of infinite volume variation, unstable solid electrolyte interphase (SEI), and dendritic sodium causes a rapid decline in performance and notorious safety hazards. Herein, a highly reversible encapsulation-based sodium storage by designing a functional hollow carbon nanotube with Zn single atom sites embedded in the carbon shell (ZnSA-HCNT) is achieved. The appropriate tube space can encapsulate bulk sodium inside; the inner enriched ZnSA sites provide abundant sodiophilic sites, which can evidently reduce the nucleation barrier of Na deposition. Moreover, the carbon shell derived from ZIF-8 provides geometric constraints and excellent ion/electron transport channels for the rapid transfer of Na+ due to its pore-rich shell, which can be revealed by in situ transmission electron microscopy (TEM). As expected, Na@ZnSA-HCNT anodes present steady long-term performance in symmetrical battery (>900 h at 10 mA cm−2). Moreover, superior electrochemical performance of Na@ZnSA-HCNT||PB full cells can be delivered. This work develops a new strategy based on carbon nanotube encapsulation of metallic sodium, which improves the safety and cycling performance of sodium metal anode.

中文翻译:

通过锌单原子植入碳纳米管封装的钠储存

金属钠(Na)的高理论容量、低成本和大潜力等特性有力地推动了可充电钠基电池的发展。然而,无限体积变化、不稳定的固体电解质界面 (SEI) 和树枝状钠等问题会导致性能迅速下降和臭名昭著的安全隐患。在此,通过设计具有嵌入碳壳(Zn SA -HCNT)中的Zn单原子位点的功能性中空碳纳米管,实现了高度可逆的基于封装的钠存储。适当的管空间可以将散装的钠包裹在里面;内部富集的 Zn SA位提供丰富的亲钠位点,可以明显降低钠沉积的成核势垒。此外,源自 ZIF-8 的碳壳由于其富含孔的壳为 Na +的快速转移提供了几何约束和出色的离子/电子传输通道,这可以通过原位透射电子显微镜 (TEM) 揭示。正如预期的那样,Na@Zn SA -HCNT 负极在对称电池中表现出稳定的长期性能(在 10 mA cm -2下 > 900 小时)。此外,Na@Zn SA -HCNT||PB 全电池还具有优异的电化学性能。这项工作开发了一种基于碳纳米管封装金属钠的新策略,提高了钠金属负极的安全性和循环性能。
更新日期:2022-06-21
down
wechat
bug