当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting Surface-Dominated Sodium Storage of Carbon Anode Enabled by Coupling Graphene Nanodomains, Nitrogen-Doping, and Nanoarchitecture Engineering
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-21 , DOI: 10.1002/adfm.202203279
Si Huang 1, 2 , Dongjie Yang 1, 2 , Xueqing Qiu 3 , Wenli Zhang 3 , Yanlin Qin 3 , Caiwei Wang 1, 2 , Conghua Yi 1, 2
Affiliation  

The development of high-performance carbon anode for sodium-ion batteries is limited by the sluggish kinetics and structural instability. Expanded interlayer spacing, nitrogen doping, and mesoporous structure engineering have emerged as promising strategies to overcome these challenges. Simultaneously achieving graphene nanodomains construction, high-efficient nitrogen doping, and rational mesoporous structure engineering is challenging. Herein, a strategy of pyrolyzing SiO2@ lignin amine urea-formaldehyde resin is proposed for deliberate manipulation of graphene nanodomains, edge-nitrogen doping, and specific mesoporous distribution in amorphous lignin-derived carbon based on polycondensation-template. The obtained carbon material exhibits a nitrogen-doping level of 6.03 at% with a high edge-nitrogen ratio of up to 84.4%, high- connectivity mesoporous structure, and graphene nanodomains with expanded interlayer spacing. The optimized carbon material delivers a reversible capacity of 234 mAh g−1 at 100 mA g−1, superior rate capability of 129 mAh g−1 at 2 A g−1, and excellent cycling stability. In addition, the surface-dominated sodium-ion storage mechanism is identified by in situ electrochemical impedance spectroscopy. Furthermore, the optimized carbon can function as an outstanding anode for full cells. This work proposes a new avenue for designing high-performance carbon for low-cost and high-rate sodium-ion batteries.

中文翻译:

通过耦合石墨烯纳米域、氮掺杂和纳米结构工程促进碳阳极的表面主导的钠储存

钠离子电池高性能碳负极的发展受到动力学缓慢和结构不稳定性的限制。扩大层间距、氮掺杂和中孔结构工程已成为克服这些挑战的有希望的策略。同时实现石墨烯纳米畴结构、高效氮掺杂和合理的介孔结构工程具有挑战性。在此,热解SiO 2的策略提出了@木质素胺脲醛树脂,用于基于缩聚模板在无定形木质素衍生碳中刻意操纵石墨烯纳米域、边缘氮掺杂和特定中孔分布。所获得的碳材料具有 6.03 at% 的氮掺杂水平、高达 84.4% 的高边氮比、高连通性中孔结构和具有扩展层间距的石墨烯纳米域。优化的碳材料在 100 mA g -1下提供 234 mAh g -1的可逆容量,在 2 A g -1下提供 129 mAh g -1的优异倍率能力,以及出色的循环稳定性。此外,通过原位电化学阻抗谱确定了表面主导的钠离子存储机制。此外,优化后的碳可以作为全电池的出色阳极。这项工作为低成本和高倍率钠离子电池设计高性能碳提供了一条新途径。
更新日期:2022-06-21
down
wechat
bug