当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room temperature giant magnetoresistance in half-metallic Cr2C based two-dimensional tunnel junctions
Nanoscale ( IF 5.8 ) Pub Date : 2022-06-22 , DOI: 10.1039/d2nr02056d
Shreeja Das 1 , Arnab Kabiraj 1 , Santanu Mahapatra 1
Affiliation  

Two-dimensional (2D) magnetic materials inherit enormous potential to revolutionize next-generation spintronic technology. The majority of prior investigations using 2D ferromagnet-based tunnel junctions have shown encouraging tunnel magnetoresistance (TMR) at low temperatures. Using first-principles-based calculations, here we investigate the magnetic properties of commercially available Cr2C crystals at their monolayer limit and reveal their half metallicity properties far beyond room temperature. We then design hetero-multilayer structures combining Cr2C with graphene and hexagonal boron nitride (h-BN) and report their magnetoresistance using spin-polarized quantum transport calculations. While graphene based devices, adsorbed on the metal contact, reveal a very high TMR (1200%), it can be further increased to 1500% by changing the barrier layer to h-BN. The dependence of TMR on the number of barrier layers and different metallic electrode materials (Ti, Ag, and Au) are also studied. Our investigation suggests that Cr2C based spin valves can serve as the perfect building blocks for room temperature all-2D spintronic devices.

中文翻译:

基于半金属 Cr2C 的二维隧道结中的室温巨磁阻

二维 (2D) 磁性材料继承了革新下一代自旋电子技术的巨大潜力。大多数使用基于 2D 铁磁体的隧道结的先前研究表明,在低温下具有令人鼓舞的隧道磁阻 (TMR)。使用基于第一性原理的计算,我们在此研究了市售 Cr 2 C 晶体在其单层极限下的磁性,并揭示了其远超出室温的半金属丰度特性。然后,我们设计了结合 Cr 2的异质多层结构C 与石墨烯和六方氮化硼 (h-BN) 并使用自旋极化量子传输计算报告它们的磁阻。虽然吸附在金属触点上的石墨烯基器件显示出非常高的 TMR(1200%),但通过将阻挡层改为 h-BN 可以将其进一步提高到 1500%。还研究了 TMR 对阻挡层数量和不同金属电极材料(Ti、Ag 和 Au)的依赖性。我们的研究表明,基于 Cr 2 C 的自旋阀可以作为室温全二维自旋电子器件的完美构件。
更新日期:2022-06-22
down
wechat
bug