当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O–O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H2O2
Analytical Chemistry ( IF 6.7 ) Pub Date : 2022-06-21 , DOI: 10.1021/acs.analchem.2c01001
Juan Li 1 , Chao Wu 1 , Chengsong Yuan 2 , Zhuanzhuan Shi 3 , Kaiyue Zhang 1 , Zhuo Zou 3 , Lulu Xiong 1 , Jie Chen 1 , Yali Jiang 1 , Wei Sun 4 , Kanglai Tang 2 , Hongbin Yang 3 , Chang Ming Li 1, 3, 5
Affiliation  

Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM–1 cm–2, which is much higher than that (6.5 μA mM–1 cm–2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of −O–O– for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.

中文翻译:

单原子铁锚定在二维石墨烯碳上以实现 O-O 的桥接吸附作为仿生酶,用于对 H2O2 进行极其灵敏的电化学检测

单原子催化主要集中在其分散的高密度催化位点,但在目标反应方面实现独特催化机制的精细设计研究较少。在此合成了一种锚定在 2-D N 掺杂石墨烯 (Fe-SASC/G) 上的铁单原子位点催化剂,并进一步用作仿生传感器以电化学检测过氧化氢,显示出 3214.28 μA mM –1 cm的极高灵敏度–2,远高于其分散在一维碳纳米线(Fe-SASC/NW)上的灵敏度(6.5 μA mM –1 cm –2),在目前报道的所有铁基催化剂中灵敏度最高。该传感器还用于成功地原位监测 H2 O 2从A549活细胞释放。进一步系统地研究了该机制。结果有趣地表明,Fe-SASC/G 的二维石墨烯上相邻的单个 Fe 原子催化位点之间的距离与 H 2 O 2的生物氧的外部长度在统计上非常匹配促进 −O–O– 的桥接吸附以同时进行 2 电子转移,而固定在 Fe-SASC/NW 中遥远的一维纳米线上的单个 Fe 原子仅允许氧原子的末端吸附以进行 1 电子转移. 这些结果表明,Fe-SASC/G 作为一种先进的电极材料在选择性和灵敏的仿生传感器和其他电催化应用中具有很大的前景,同时为更深层次的单原子催化机制提供科学见解,特别是底物尺寸对该机制的影响。
更新日期:2022-06-21
down
wechat
bug