当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defined positive charge patterns created on DNA nanostructures determine cellular uptake efficiency
Nano Letters ( IF 9.6 ) Pub Date : 2022-06-21 , DOI: 10.1021/acs.nanolett.2c01316
Yiwei Shi 1 , Xuemei Xu 2 , Huaibin Yu 1 , Zian Lin 1 , Honghua Zuo 1 , Yuzhou Wu 1
Affiliation  

We provide an effective method to create DNA nanostructures below 100 nm with defined charge patterns and explore whether the density and location of charges affect the cellular uptake efficiency of nanoparticles (NPs). To avoid spontaneous charge neutralization, the negatively charged polymer nanopatterns were first created by in situ polymerization using photoresponsive monomers on DNA origami. Subsequent irradiation generated positive charges on the immobilized polymers, achieving precise positively charged patterns on the negatively charged DNA surface. Via this method, we have discovered that the positive charges located on the edges of nanostructures facilitate more efficient cellular uptake in comparison to the central counterparts. In addition, the high-density positive charge decoration could also enhance particle penetration into 3D multicellular spheroids. This strategy paves a new way to construct elaborate charge-separated substructures on NP surfaces and holds great promise for a deeper understanding of the influence between the surface charge distribution and nano-bio interactions.

中文翻译:

在 DNA 纳米结构上创建的明确的正电荷模式决定了细胞摄取效率

我们提供了一种有效的方法来创建具有定义电荷模式的 100 nm 以下的 DNA 纳米结构,并探索电荷的密度和位置是否会影响纳米粒子 (NPs) 的细胞摄取效率。为了避免自发的电荷中和,带负电荷的聚合物纳米图案首先由原位创建在 DNA 折纸上使用光响应单体进行聚合。随后的辐照在固定的聚合物上产生正电荷,在带负电荷的 DNA 表面上实现精确的正电荷图案。通过这种方法,我们发现与中央对应物相比,位于纳米结构边缘的正电荷有助于更有效的细胞摄取。此外,高密度正电荷装饰还可以增强粒子对 3D 多细胞球体的渗透。该策略为在 NP 表面构建精细的电荷分离子结构铺平了新的方法,并为更深入地了解表面电荷分布和纳米生物相互作用之间的影响提供了广阔的前景。
更新日期:2022-06-21
down
wechat
bug