当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Photoinduced Thermocatalytic Chemiluminescence System Based on the Z-Scheme Heterojunction Ag3PO4/Ag/Bi4Ti3O12 for H2S Sensing
Analytical Chemistry ( IF 7.4 ) Pub Date : 2022-06-21 , DOI: 10.1021/acs.analchem.2c01586
Jiaxi Hu 1 , Hongjie Song 2 , Cheng Chen 1 , Lichun Zhang 2 , Mingxia Sun 1 , Yi Lv 1, 2
Affiliation  

Cataluminescence as a highly efficient gas transduction principle has attracted wide attention among research in environmental monitoring and clinical diagnosis with increasing awareness of human safety. Nowadays, the development of innovation sensing systems and the construction of the sensing mechanism to improve the analytical performance of compounds remain a major challenge. Herein, we construct an advanced photoinduced thermocatalytic chemiluminescence (PI-TC-CL) gas-sensing system via the introduction of a Z-scheme heterojunction Ag3PO4/Ag/Bi4Ti3O12 to achieve higher efficient detection of H2S. The unique electron transport path of the Z-scheme heterojunction and the LSPR effect of Ag nanoparticles fascinate the generation of the photoinduced electron–hole pair on the surface of catalysts when stimulated by LED lamps and slow down the recombination of electron–hole pairs under thermal conditions. Thus, based on the cooperative effect of the Z-scheme heterojunction AgPO/Ag/BTO and PI-TC-CL system, we have successfully established an efficient H2S CTL detection system, which has a response three times higher than that on the traditional CTL system and even 45 times higher than that on BTO and ranges among the best of the state-of-the-art CTL performance in H2S detection with the linear range of 0.095–8.87 μg mL–1 and a limit of detection of 0.0065 μg mL–1. Besides, to explore the gas-sensing mechanism, the synergetic effects of photoinduction and thermal catalysis are investigated thoroughly via conductivity and electrochemical experiments. This research provides a new perspective of engineering highly efficient catalysts and ingenious sensor systems through designing the nanostructure of materials and synergism catalytic mechanism.

中文翻译:

基于 Z 型异质结 Ag3PO4/Ag/Bi4Ti3O12 的高效光致热催化化学发光系统用于 H2S 传感

催化发光作为一种高效的气体传导原理,随着人类安全意识的提高,在环境监测和临床诊断研究中引起了广泛关注。如今,创新传感系统的发展和传感机制的构建以提高化合物的分析性能仍然是一项重大挑战。在此,我们通过引入Z型异质结Ag 3 PO 4 /Ag/Bi 4 Ti 3 O 12构建了先进的光诱导热催化化学发光(PI-TC-CL)气敏系统,以实现对H 2的更高效检测S. Z型异质结的独特电子传输路径和Ag纳米粒子的LSPR效应使受LED灯激发时催化剂表面光致电子-空穴对的产生着迷,并减缓了电子-空穴对的复合在热条件下。因此,基于Z型异质结AgPO/Ag/BTO和PI-TC-CL体系的协同作用,我们成功建立了高效的H 2 S CTL检测系统,其响应比在传统 CTL 系统,甚至比 BTO 高 45 倍,在 H 2 S 检测中处于最先进的 CTL 性能中,线性范围为 0.095–8.87 μg mL –1检测限为 0.0065 μg mL –1。此外,为了探索气体传感机制,通过电导率和电化学实验深入研究了光感应和热催化的协同效应。该研究通过设计材料的纳米结构和协同催化机制,为设计高效催化剂和巧妙的传感器系统提供了新的视角。
更新日期:2022-06-21
down
wechat
bug