当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
W5+–W5+ Pair Induced LSPR of W18O49 to Sensitize ZnIn2S4 for Full-Spectrum Solar-Light-Driven Photocatalytic Hydrogen Evolution
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-19 , DOI: 10.1002/adfm.202203638
Yue Lu 1 , Xiaofang Jia 1 , Zhaoyu Ma 1 , Yang Li 1 , Shuai Yue 2, 3, 4 , Xinfeng Liu 2, 3, 4 , Junying Zhang 1
Affiliation  

The localized surface plasmon resonances (LSPR) effect makes W18O49 an effective visible and near-infrared (NIR) light antenna to realize full-spectrum solar-light driven photocatalysis, yet the precise origin remains elusive. Here, the LSPR originates from the localized electron confinement around lattice W5+–W5+ pairs in the unique structure of W18O49 by density-functional theory calculation, which gives W18O49 a broad absorption ranging from visible to NIR region, independent of the particle shape and size is confirmed. This unique periodic LSPR simplifies the design of W18O49-sensitized photocatalytic composite into enhancing the light absorbance of W18O49 and screening photocatalytic semiconductors with suitable energy band potentials. To this end, hierarchical-structure W18O49 microflowers with high absorbance have been coated with ZnIn2S4 nanosheets to achieve cocatalyst-free photocatalytic composite, which presents an outstanding H2 production rate of 902.57 µmol within 3 h under simulated solar-light. Comprehensive characterizations, including ultrafast transient absorption spectroscopy, prove the injection of hot electrons from W18O49 to ZnIn2S4 and the increase of long-lived active electrons. This work clarifies the LSPR origin of oxygen-deficient semiconductors and paves the way for the search of broad-spectrum active photocatalyst.

中文翻译:

W5+–W5+ 对诱导 W18O49 的 LSPR 敏化 ZnIn2S4 用于全光谱太阳光驱动的光催化制氢

局部表面等离子体共振(LSPR)效应使W 18 O 49成为一种有效的可见光和近红外(NIR)光天线,可实现全光谱太阳光驱动的光催化,但确切的起源仍然难以捉摸。在这里,通过密度泛函理论计算,LSPR源于W 18 O 49独特结构中晶格W 5+ -W 5+对周围的局域电子限制,这使W 18 O 49具有从可见光到近红外光的广泛吸收区域,与颗粒形状和大小无关。这种独特的周期性 LSPR 简化了 W 18 O 49的设计-敏化光催化复合材料以提高W 18 O 49的吸光度并筛选具有合适能带势的光催化半导体。为此,利用ZnIn 2 S 4纳米片包覆具有高吸光度的分级结构W 18 O 49微花,实现了无助催化剂的光催化复合材料,在模拟太阳光下3 h内H 2产率高达902.57 µmol。光。综合表征,包括超快瞬态吸收光谱,证明热电子从 W 18 O 49注入到 ZnIn 2 S4和长寿命活性电子的增加。这项工作阐明了缺氧半导体的 LSPR 起源,为寻找广谱活性光催化剂铺平了道路。
更新日期:2022-06-19
down
wechat
bug