当前位置: X-MOL 学术Cellulose › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Morphology control of poly(lactic) acid/polypropylene blend composite by using silanized cellulose fibers extracted from coir fibers
Cellulose ( IF 4.9 ) Pub Date : 2022-06-18 , DOI: 10.1007/s10570-022-04675-7
Marya Raji , Hamid Essabir , Mounir ElAchaby , Rachid Bouhfid , Abou El Kacem Qaiss

The objective of this work is the use of cellulose fibers extracted from coir fibers as Janus nanocylinders to suppress the phase retraction and coalescence in poly(lactic) acid/polypropylene bio-blend polymers via prompting the selective localization of cellulose fibers at the interface using chemical modification. The untreated and modified cellulose fibers extracted from coir fibers using a silane molecule (tetraethoxysilane) were used as reinforcement and as Janus nanocylinder at two weight contents (2.5 wt% and 5 wt%) to manipulate the morphology of the bio-blends. Their bio-composites with PLA-PP matrix were prepared via melt compounding (at PLA/PP: 50/50). The treatment effect on component interaction and the bio-composites properties have been studied via Scanning electron microscopy, infrared spectroscopy, and differential calorimetry analysis. The mechanical and rheological properties of nanocomposites were similarly assessed. Young's modulus and tensile strength of PLA-PP nanocomposites reinforced by silanized cellulose fibers show a great enhancement as compared to a neat matrix. In particular, there was a gain of 18.5% in Young's modulus and 11.21% in tensile strength for silanized cellulose fiber-based bio-blend composites at 5 wt%. From the rheological point of view, it was found that the silanized cellulose fibers in PLA-PP at both fibers loading enhances the adhesion between both polymers leading to tuning their morphology from sea-island to the continuous structures with the appearance of PLA microfibrillar inside of bio-composites. This change was reflected in the relaxation of the chain mobility of the bio-blend composites.



中文翻译:

使用从椰壳纤维中提取的硅烷化纤维素纤维控制聚乳酸/聚丙烯共混复合材料的形态

这项工作的目的是使用从椰壳纤维中提取的纤维素纤维作为 Janus 纳米圆柱体,通过使用化学物质促进纤维素纤维在界面处的选择性定位来抑制聚(乳酸)/聚丙烯生物共混聚合物中的相收缩和聚结。修改。使用硅烷分子(四乙氧基硅烷)从椰壳纤维中提取的未处理和改性纤维素纤维用作增强材料,并用作两种重量含量(2.5 wt% 和 5 wt%)的 Janus 纳米圆柱体,以控制生物混合物的形态。它们与 PLA-PP 基质的生物复合材料是通过熔融复合制备的(PLA/PP:50/50)。通过扫描电子显微镜、红外光谱、和差示量热分析。类似地评估了纳米复合材料的机械和流变性能。与纯基体相比,由硅烷化纤维素纤维增强的 PLA-PP 纳米复合材料的杨氏模量和拉伸强度显示出极大的提高。特别是,5 wt% 的硅烷化纤维素纤维基生物共混复合材料的杨氏模量增加了 18.5%,拉伸强度增加了 11.21%。从流变学的角度来看,发现 PLA-PP 中的硅烷化纤维素纤维在两种纤维负载下都增强了两种聚合物之间的粘附力,从而将它们的形态从海岛调整为连续结构,其中 PLA 微纤维内部出现。生物复合材料。这种变化反映在生物共混复合材料链流动性的松弛上。类似地评估了纳米复合材料的机械和流变性能。与纯基体相比,由硅烷化纤维素纤维增强的 PLA-PP 纳米复合材料的杨氏模量和拉伸强度显示出极大的提高。特别是,5 wt% 的硅烷化纤维素纤维基生物共混复合材料的杨氏模量增加了 18.5%,拉伸强度增加了 11.21%。从流变学的角度来看,发现 PLA-PP 中的硅烷化纤维素纤维在两种纤维负载下都增强了两种聚合物之间的粘附力,从而将它们的形态从海岛调整为连续结构,其中 PLA 微纤维内部出现。生物复合材料。这种变化反映在生物共混复合材料链流动性的松弛上。类似地评估了纳米复合材料的机械和流变性能。与纯基体相比,由硅烷化纤维素纤维增强的 PLA-PP 纳米复合材料的杨氏模量和拉伸强度显示出极大的提高。特别是,5 wt% 的硅烷化纤维素纤维基生物共混复合材料的杨氏模量增加了 18.5%,拉伸强度增加了 11.21%。从流变学的角度来看,发现 PLA-PP 中的硅烷化纤维素纤维在两种纤维负载下都增强了两种聚合物之间的粘附力,从而将它们的形态从海岛调整为连续结构,其中 PLA 微纤维内部出现。生物复合材料。这种变化反映在生物共混复合材料链流动性的松弛上。

更新日期:2022-06-18
down
wechat
bug