当前位置: X-MOL 学术Geoderma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enrichment of 13C with depth in soil organic horizons is not explained by CO2 or DOC losses during decomposition
Geoderma ( IF 5.6 ) Pub Date : 2022-06-17 , DOI: 10.1016/j.geoderma.2022.116004
Michael Philben , Keri Bowering , Frances A. Podrebarac , Jérôme Laganière , Kate Edwards , Susan E. Ziegler

Stable isotope ratios of soil organic carbon (SOC) are a potentially powerful, integrative tool for analyzing the soil C cycle. However, limited understanding of the mechanisms for C isotope fractionation in soil prevents their widespread application. Soil organic carbon (SOC) is progressively enriched in 13C with age and depth in the soil profile even though CO2 produced during soil respiration is typically enriched in 13C compared to SOC. This results in an apparent mass balance paradox. To resolve this paradox, we hypothesized that the loss of 13C-depleted DOC during soil diagenesis, the combination of microbial decomposition and abiotic processes such as leaching, can account for the increase in SOC δ13C with depth. We combined three independent approaches (field measurements, a laboratory incubation experiment, and seasonal sampling of DOC across a climate transect) to systematically evaluate the relationship between the δ13C of soil respiration, DOC, and the SOC it is derived from. However, DOC was not significantly depleted in 13C compared to SOC in any of the three approaches, and mass balance calculations indicated that the DOC flux cannot account for the full extent of 13C enrichment of SOC with depth in the soil profile. We suggest that vertical C transport by plant roots or fungi, rather than diagenesis, may be largely responsible for the observed C isotope profile. Future studies aimed at understanding these vertical transport processes should enable increased application of soil δ13C, enhancing soil biogeochemical studies.



中文翻译:

13C 随着土壤有机层深度的增加不能用分解过程中的 CO2 或 DOC 损失来解释

土壤有机碳 (SOC) 的稳定同位素比率是分析土壤碳循环的潜在强大的综合工具。然而,对土壤中 C 同位素分馏机制的有限了解阻碍了其广泛应用。尽管土壤呼吸过程中产生的 CO 2与 SOC 相比通常富含13 C,但随着土壤剖面中的年龄和深度,土壤有机碳 (SOC) 逐渐富含13 C。这导致了明显的质量平衡悖论。为了解决这个悖论,我们假设土壤成岩过程中13 C 耗尽的 DOC 的损失、微生物分解和非生物过程(如浸出)的结合可以解释 SOC δ 13的增加C 有深度。我们结合了三种独立的方法(现场测量、实验室孵化实验和跨气候样带的 DOC 季节性采样)来系统地评估土壤呼吸的 δ 13 C、DOC 和它所衍生的 SOC 之间的关系。然而,与三种方法中的任何一种方法中的 SOC 相比,DOC 在13 C 中没有显着耗尽,并且质量平衡计算表明 DOC 通量不能解释13的全部范围土壤剖面中 SOC 随深度的 C 富集。我们认为植物根系或真菌的垂直 C 运输,而不是成岩作用,可能是观察到的 C 同位素分布的主要原因。旨在了解这些垂直迁移过程的未来研究应该能够增加土壤 δ 13 C 的应用,从而加强土壤生物地球化学研究。

更新日期:2022-06-19
down
wechat
bug