当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid microwave annealing assisted synthesis of MoS2-RGO nanostructures: Optimization and characterization for application in supercapacitors
Electrochimica Acta ( IF 5.5 ) Pub Date : 2022-06-17 , DOI: 10.1016/j.electacta.2022.140738
Prashant Kumar , Seema Sharma , Shakra Jabeen , Kawaljeet Singh Samra

The feasible solution to overcome the mismatch between the world's energy demand and supply can be the development of appropriate charge-storing devices like batteries and supercapacitors. In the present work, an attempt has been made to design an efficient supercapacitor electrode material by employing the synergistic effects of Molybdenum disulfide (MoS2) and reduced graphene oxide (RGO). A time saving hybrid microwave assisted annealing technique has been used to synthesize MoS2-RGO based nanostructures with varying composition of RGO i.e. 5, 10, 15 and 20%. FESEM, XRD and Raman spectroscopy have been employed to study the surface morphology and structure of the synthesized nanomaterial. The candidature of the MoS2-RGO nanostructures for the electrode material of supercapacitor has been justified by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). A magnificent performance like specific capacity of 429.67 Cg−1 (1023 Fg−1) at a current density of 1 Ag−1 and a decent retention of 82% after 1000 cycles, even at the higher current density i.e. 5Ag−1, was displayed by the MoS2-RGO (10%) nanostructure based electrode. The correlating results of voltammetric and EIS studies are reported and discussed.



中文翻译:

MoS2-RGO纳米结构的混合微波退火辅助合成:在超级电容器中的应用优化和表征

克服世界能源供需不匹配的可行解决方案是开发合适的充电设备,如电池和超级电容器。在目前的工作中,尝试利用二硫化钼(MoS 2)和还原氧化石墨烯(RGO)的协同效应来设计一种高效的超级电容器电极材料。一种节省时间的混合微波辅助退火技术已被用于合成具有不同组成的 RGO5、10、15和 20%的 MoS 2 -RGO 基纳米结构。FESEM、XRD和拉曼光谱已被用于研究合成纳米材料的表面形态和结构。MoS 2的候选资格-RGO 纳米结构用于超级电容器的电极材料已通过使用循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱 (EIS) 进行了验证。显示了出色的性能,例如在 1 Ag -1的电流密度下的比容量为 429.67 Cg -1 (1023 Fg -1 ) ,即使在更高的电流密度即 5Ag -1下,在 1000 次循环后仍保持良好的 82%。由基于 MoS 2 -RGO (10%) 纳米结构的电极。报告和讨论了伏安法和 EIS 研究的相关结果。

更新日期:2022-06-17
down
wechat
bug