当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin layered 2D/2D heterojunction of ReS2/high-crystalline g-C3N4 for significantly improved photocatalytic hydrogen evolution
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-06-18 , DOI: 10.1016/j.cej.2022.137613
Tingyu Yang , Yuanyuan Shao , Jundie Hu , Jiafu Qu , Xiaogang Yang , Fengyi Yang , Chang Ming Li

Fabricating efficient nanocatalysts with excellent visible light response, coupled with rapid charge separation and transfer efficiency is still the most challenge for solar-driven hydrogen (H2) evolution. Herein, an ultrathin layered 2D/2D van der Waals heterojunction of ReS2/high-crystalline g-C3N4 (CCN) is constructed for the first time to significantly boost photocatalytic H2 production. The as-prepared optimized 15% ReS2/CCN exhibits the highest H2-evolution rate of 3.46 mmol g−1h−1 under visible light irradiation, a 2.7 fold enhancements over that of pristine CCN and is also much higher than ReS2 alone. The excellent photocatalytic performance of ReS2/CCN is mainly attributed to the efficient charge transport of highly crystalline CCN by eliminating deep defects, the strong visible light harvesting of ReS2 nanoflakes, as well as the synergistic effect of an ultrathin layered 2D/2D heterojunction to rapidly enable charge-separation while inhibiting the charge recombination. This work provides an efficient photocatalyst for H2 energy production, and sheds light on fundamental insight to a rational design of photo/electro nanocatalysts or heterojunction materials toward highly efficient photocatalyst.



中文翻译:

ReS2/高晶 g-C3N4 的超薄层状 2D/2D 异质结用于显着改善光催化析氢

制造具有优异可见光响应的高效纳米催化剂,以及快速的电荷分离和转移效率仍然是太阳能驱动的氢 (H 2 ) 演化的最大挑战。在此,首次构建了ReS 2 /高结晶 gC 3 N 4 (CCN)的超薄层状 2D/2D 范德华异质结,以显着提高光催化 H 2的产生。所制备的优化的 15% ReS 2 /CCN 在可见光照射下表现出最高的 H 2释放速率,为 3.46 mmol g -1 h -1,比原始 CCN 提高了 2.7 倍,也远高于 ReS2单独。ReS 2 /CCN优异的光催化性能主要归功于高结晶 CCN 通过消除深层缺陷的高效电荷传输、ReS 2纳米薄片的强可见光捕获以及超薄层状 2D/2D 异质结的协同效应快速实现电荷分离,同时抑制电荷复合。这项工作为 H 2能量生产提供了一种高效的光催化剂,并阐明了合理设计光/电纳米催化剂或异质结材料以实现高效光催化剂的基本见解。

更新日期:2022-06-22
down
wechat
bug