当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of DLPNO-CCSD(T)-F12 and its use for the formulation of the low-cost and reliable L-W1X composite method
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2022-06-16 , DOI: 10.1002/jcc.26892
Bun Chan 1 , Amir Karton 2
Affiliation  

In the present study, we have investigated the performance of RIJCOSX DLPNO-CCSD(T)-F12 methods for a wide range of systems. Calculations with a high-accuracy option [“DefGrid3 RIJCOSX DLPNO-CCSD(T1)-F12”] extrapolated to the complete-basis-set limit using the maug-cc-pV[D+d,T+d]Z basis sets provides fairly good agreements with the canonical CCSD(T)/CBS reference for a diverse set of thermochemical and kinetic properties [with mean absolute deviations (MADs) of ~1–2 kJ mol−1 except for atomization energies]. On the other hand, the low-cost “RIJCOSX DLPNO-CCSD(T)-F12D” option leads to substantial deviations for certain properties, notably atomization energies (MADs of up to tens of kJ mol−1). With the high-accuracy CBS approach, we have formulated the L-W1X method, which further includes a low-cost core–valence plus scalar-relativistic term. It shows generally good accuracy. For improved accuracies in specific cases, we advise replacing maug-cc-pV(n+d)Z with jun-cc-pV(n+d)Z for the calculation of electron affinities, and using well-constructed isodesmic-type reactions to obtain atomization energies. For medium-sized systems, DefGrid3 RIJCOSX DLPNO-CCSD(T1)-F12 calculations are several times faster than the corresponding canonical computation; the use of the local approximations (RIJCOSX and DLPNO) leads to a better scaling than that for the canonical calculation (from ~6–7 down to ~2–4 for our test systems). Thus, the DefGrid3 RIJCOSX DLPNO-CCSD(T1)-F12 method, and the L-W1X protocol that based on it, represent a useful means for obtaining accurate thermochemical quantities for larger systems.

中文翻译:

DLPNO-CCSD(T)-F12的评估及其在低成本和可靠的L-W1X复合方法制定中的应用

在本研究中,我们研究了 RIJCOSX DLPNO-CCSD(T)-F12 方法在各种系统中的性能。使用 maug-cc-pV[D+d,T+d]Z 基组外推到完整基组极限的高精度选项 [“DefGrid3 RIJCOSX DLPNO-CCSD(T 1 )-F12”] 的计算对于各种热化学和动力学特性[平均绝对偏差 (MAD) 约为 1-2 kJ mol -1,除了原子化能量],与规范的 CCSD(T)/CBS 参考提供了相当好的一致性。另一方面,低成本的“RIJCOSX DLPNO-CCSD(T)-F12D”选项会导致某些特性的显着偏差,特别是雾化能量(MAD 高达数十 kJ mol -1)。使用高精度 CBS 方法,我们制定了 L-W1X 方法,该方法进一步包括低成本核心价加标量相对论项。它通常显示出良好的准确性。为了在特定情况下提高准确性,我们建议将 maug-cc-pV( n +d)Z 替换为 jun-cc-pV( n +d)Z 以计算电子亲和力,并使用构造良好的等速型反应获得原子化能量。对于中型系统,DefGrid3 RIJCOSX DLPNO-CCSD(T 1)-F12计算比相应的规范计算快几倍;使用局部近似(RIJ​​COSX 和 DLPNO)导致比规范计算更好的缩放(对于我们的测试系统,从 ~6-7 下降到 ~2-4)。因此,DefGrid3 RIJCOSX DLPNO-CCSD(T 1 )-F12 方法和基于它的 L-W1X 协议代表了为大型系统获得准确热化学量的有用方法。
更新日期:2022-06-16
down
wechat
bug